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We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general
unstructured meshes in arbitrary dimension. The construction of the scheme is based upon
the definition of some geometric vectors which are defined on a moving mesh. The finite
volume solver is node based and compatible with the mesh displacement. We also discuss
boundary conditions. Numerical results on basic 3D tests problems show the efficiency of
this approach. We also consider a quasi-incompressible test problem for which our nodal
solver gives very good results if compared with other Godunov solvers. We briefly discuss
the compatibility with ALE and/or AMR techniques at the end of this work. We detail the
coefficients of the isoparametric element in the appendix.
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1. Introduction

In this work we describe a method to solve the equations of Lagrangian hydrodynamics [3,28] on general unstructured
meshes in arbitrary dimension. The physical variables are the density q, the velocity u, the total energy e and the pressure
p. In integral form these equations are
D
Dt

R
VjðtÞ

qdV ¼ 0; mass conservation;
D
Dt

R
VjðtÞ

qudV þ
R

SjðtÞ
pndS ¼ 0; momentum conservation;

D
Dt

R
VjðtÞ

qedV þ
R

SjðtÞ
pu:ndS ¼ 0; total energy conservation;

D
Dt

R
VjðtÞ

dV �
R

SjðtÞ
u:ndS ¼ 0; volume conservation:

8>>>>>><>>>>>>:
ð1Þ
Here VjðtÞ is a moving domain, in practice it is a moving cell with constant mass. The operator D
Dt ¼ @t þ u � r is the material

derivative. The first three equations are physical equations, and the last one is a geometric one.
We call the scheme GLACE since it is a Godunov method (in dimension one the scheme is equal to the acoustic Godunov

scheme [17,18]), the scheme is LAgrangian, and finally the method is Conservative for the total Energy variable. The method
is cell-centered like any Godunov type scheme [17,18,37,20].

Classically, Lagrangian hydrodynamics equations are solved with staggered schemes (that is kinematic variables at nodes
and thermodynamic variables within the cells), following the seminal idea of Von Neumann [26]. We refer to the works
[4,3,9,6,16,15,27,39] and references therein for a presentation of this topic. These methods require the use of artificial vis-
cosity techniques to capture shocks. The so-called compatible hydrodynamics [6] Lagrangian scheme is a recent improve-
ment: it is by construction conservative for all physical variables. To our knowledge this is the only staggered Lagrangian
. All rights reserved.
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scheme with this highly desirable property. Another approach that we do not discuss in this paper is the use of a Finite Ele-
ment formulation of Lagrangian hydrodynamics, see [33] where such a method (also staggered for the final scheme, and con-
servative for all physical variables) is described. We also mention the work on stabilized and variational multi-scale
formulations for Lagrangian hydrodynamics in [32,31,29,30], where a globally conservative formulation is obtained from
a nodal-based finite element method.

The a priori good properties of Godunov cell-centered methods are: a natural conservation of physical quantities; no need
for artificial viscosity techniques; easy implementation of fully conservative remapping and remeshing techniques. The
method described in this paper originates from a series of work [21,25,13,22] in which a new approach for the definition
of cell-centered Godunov schemes for Lagrangian hydrodynamics is pursued. In particular we follow [12,13], further ex-
tended in [22], where the idea of having nodes based fluxes is developed. This was recognized as a fundamental issue for
the design of Godunov schemes for Lagrangian hydrodynamics. On the contrary the Caveat approach [1], see also [3], suffers
from serious theoretical incompatibilities mainly because the fluxes are edge based and not node based. In a different direc-
tion we also refer to the recent work [10] in which a new class of ENO Lagrangian type schemes is developed for quadrilateral
cells and to [11] where an analysis of Godunov schemes on staggered meshes is performed.

In the following, we describe a general formalism which aims at simplifying the understanding of what is a cell-centered
Godunov scheme for Lagrangian hydrodynamics in any dimension on general polygonal (or polyhedral) meshes: the cells can
have warped faces as well in this new formalism, which was not the case in [13]. The presentation is no more partial differ-
ential equations (PDE) based as it was the case in [13,19] for instance. Instead we directly consider some basic formulas that
one can write for a moving mesh. This constitutes a framework which can provide a toolbox for the discretization of PDE
operators on moving meshes. It shows the importance of some vectors Cjr (j stands for the cells, r stands for the vertices)
which contain all the needed geometric information. These vectors are all we need for the discretization of the divergence
operator and the gradient operator. Our aim is that it will be an aid to practitioners because these definitions are immediate
from the geometry of the mesh. In some sense the nodal solver that we construct is a kind of multiD Riemann solver and is a
Lagrangian generalization of Eulerian 1D Riemann solvers for which we refer the reader to the standard textbooks [37,20].
This solver is not a cure for the well known problems attached to Godunov solvers: on 1D test problems it behaves like any
other Godunov solvers. Our concern is the multiD generalization on general meshes. The design principle of our approach
makes a priori possible the use of any type of cells, not only simplicial meshes or combination of simplicial elements as
in the reference [24]. Simplicial elements are very convenient in order to have an immediate geometric interpretation. How-
ever in some 3D cases simplicial elements introduce an arbitrary non symmetric decomposition of the faces into triangles
(particularly in the case where all the nodes of the triangles must be vertices of the mesh, as in [24]). It can break the natural
symmetries of the problem and this is something we do not want to do for the kind of 3D meshes we use in the numerical
section. In the numerical section basic examples show indeed a very good behavior for meshes with such a symmetry. In the
appendix we detail the formulas for the 3D isoparametric element [36,14].

The outline of this work is the following. In Section 2 we define and explain the basic properties of the vectors Cjr . The
next section is devoted to the presentation of the first-order GLACE scheme. Section 4 focuses on the discretization of bound-
ary conditions. Then we give some theoretical properties of the scheme in Section 5. Time step considerations are developed
in Section 6. The second-order ‘‘Monotone Upstream-centered Scheme for Conservation Laws” (MUSCL) extension is given in
Section 7. Some basic test problems are discussed in the numerical experiments Section 8. Finally the appendix gives more
technical material about the definition of the vectors Cjr for isoparametric cells. We adopt the notation that all vectors and
matrices are bold faces. We use the convention that the time derivative of t # f ðtÞ is f 0, while the time derivative of a com-
posed function gðxðtÞÞ is d

dt g ¼ ðx0;rgÞ.
2. Geometry on a moving mesh

The aim of this section is to provide basic relations on a moving geometry, which will be the foundations of the PDE dis-
cretization. Let us consider a computational domain V � Rd. This domain is composed of cells indexed by j. In practice the
dimension of the problem can be d ¼ 1;2 or 3. In the sequel we refer systematically to the volume of the cell. This is a con-
venient abuse of notation. In dimension d ¼ 2 the volume becomes an area. In dimension d ¼ 1 it is a length.

In a Lagrangian computation the mesh moves with the flow. The volume of cell j at time tk ¼ tk�1 þ Dt is denoted as Vk
j .

The vertices of the mesh are nodes xk
r 2 Rd. Let us denote xk ¼ xk

1; . . . ;xk
r ; . . .

� �
the collection of all vertices. We assume that

the volume Vk
j is defined as a function of the vertices xk # VjðxkÞ. It means that we have a formula to do so, whatever this

formula is. In the sequel we concentrate on the consequences of this assumption. For the simplicity of the presentation, we
shall also consider the semi-discrete scheme which is continuous in time and fully discrete in space: in this case the volume
is VjðxðtÞÞ.

A first problem is to compute the derivative d
dt Vj of the volume as a function of the nodal velocities urðtÞ ¼ x0rðtÞ. This prob-

lem is fundamental in any Lagrangian computation. Let us define the gradient of the volume Vj with respect to the nodal
positions xr
Cjr ¼ rxr V j ¼
@

@xr;1
Vj; . . . ;

@

@xr;d
Vj

� �t

2 Rd: ð2Þ
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This definition is the cornerstone of our approach, as in the seminal work [38] (more references to be found in [6,24]). By
construction one has
d
dt

Vj ¼ ðrxVj;x0Þ ¼
X

r

ðCjr;urÞ: ð3Þ
This equation expresses that the change of volume is due to a discrete divergence, see the last equation of (1). By duality it
can be used to define a discrete gradient.

Also fundamental is the homogeneity of the volume with respect to the vertices VjðkxÞ ¼ kdVjðxÞ: for example in dimen-
sion d ¼ 3 a scaling of the mesh size by a factor 2 implies a multiplication by 23 ¼ 8 of all volumes. The Euler relation for
homogeneous functions holds, so
Vj ¼
1
d
ðrxVj;xÞ ¼

1
d

X
r

ðCjr ;xrÞ: ð4Þ
It means that the knowledge of the geometrical vectors Cjr is all we need to compute the volume of the cell and the variation
in time of this volume. Two additional properties can be deduced.

Proposition 1. For all cell j one has
X
r

Cjr ¼ 0: ð5Þ
If the vertex xr is in the interior of the computational domain and the volumes of the cells are compatible (that is their sum is equal
to the total volume) thenX
j

Cjr ¼ 0: ð6Þ
An interpretation of these properties is possible for simple geometries. We will show with an example in dimension d ¼ 2
(see Section 2.3) that these algebraic properties are equivalent to a finite volume geometrical integration. In simple cases, Eq.
(6) can also be deduced from (5) after the definition of control volumes around the vertices.

Consider an arbitrary constant velocity field ur ¼ uref . Then the volume of any cell is constant that is 0 ¼ d
dt Vj ¼P

rðCjr;urefÞ for all uref 2 Rd. It proves relation (5). It remains to prove relation (6). Assume that the total volume
V ¼

P
jV j is constant: 0 ¼ d

dt V ¼
P

j
d
dt Vj ¼

P
j

P
rðCjr;urÞ

� �
, that is 0 ¼

P
s – r

P
jðCjs;usÞ

� �
þ
P

jðCjr;urÞ. Set us ¼ 0 for s – r,
and ur – 0 arbitrary for an interior node: it implies that

P
jCjr ¼ 0 which proves the result.

We detail the computation of Cjr in the subsequent paragraphs. In dimension d ¼ 1 the length of a cell is uniquely defined.
The area of a polygonal cell is also uniquely defined according to the coordinates of its vertices in dimension d ¼ 2. So Cjr is
uniquely defined for d ¼ 1;2. In dimension d ¼ 3, several constructions can be derived to describe the geometry of a poly-
hedron defined by its vertices (this is essentially related to the presence of non-planar faces). For instance, one can consider
that an hexahedron is the image by an isoparametric transformation of the unit cube. But it can also be defined as the union
of several tetrahedra. In Appendix A we construct Cjr for the particular case of hexahedron Fig. 1: one is based on a
isoparametric representation. In all cases once the choice of a representation has been made, the Cjr is uniquely defined
by relation (2).

2.1. Computation of Cjr in 1D

To simplify, we denote by r ¼ jþ 1
2 the vertex between j and jþ 1. Then of course Vj ¼ xjþ1

2
� xj�1

2
. So Cj;jþ1

2
¼ 1 and

Cj;j�1
2
¼ �1.

2.2. Computation of Cjr in the planar 2D case

Consider the typical situation of Fig. 2. By convention the vertices are listed counterclockwise xr�1;xr;xrþ1; . . . with coor-
dinates xr ¼ ðxr ; yrÞ. The quantity 1

2 ðxryrþ1 � yrxrþ1Þ is the oriented area of the triangle with vertices xr; xrþ1 and O ¼ ð0;0Þ. The
sum of these oriented area is the total area Vj ¼

P
r

1
2 ðxryrþ1 � yrxrþ1Þ. Therefore the formula (2) implies (after elementary

manipulations) the formula used in [13]
Cjr ¼
1
2
ð�yr�1 þ yrþ1; xr�1 � xrþ1Þt : ð7Þ
2.3. Geometrical interpretation of (5)–(7) in the planar 2D case

For the completeness of the presentation, we give a geometrical interpretation of (5)–(7) in dimension 2, filling the gap
with the standard Finite Volume approach developed for example in [13,22]. Consider Fig. 3 where edges have been cut into
two half pieces. For example cells p and k are neighbors to the cell j. The interface between j and p (resp. k) is characterized by



Fig. 1. In dimension d ¼ 3, an hexahedron Vj and its 8 vertices.

Fig. 2. A mesh in dimension d ¼ 2.
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the vector ljpnjp (resp. ljknjk): it is the product of the length of the interface by the normal. If one cuts these edges in two pieces
and glue them at the corner then one gets
ljrnjr ¼
1
2

ljpnjp þ
1
2

ljknjk: ð8Þ
The unit vector njr is a definition of a normal at the node, and ljr is the half of the length of the segment ½xr�1;xrþ1�. By con-
struction one has
ljrnjr ¼
1
2
ð�yr�1 þ yrþ1; xr�1 � xrþ1Þt ¼ Cjr:
In this framework the relation (5) simply means that the sum of the outgoing normals multiplied by the length of the inter-
faces is equal to zero. It is a well known property of any finite volume method: the cell j is a closed contour.

Consider now Fig. 4 where we have displayed in bold the pieces of boundaries which are used to define ljrnjr but also lprnpr

and lkrnkr . It is clear by construction that ljrnjr þ lprnpr þ lkrnkr ¼ 1
2 ljpnjp þ 1

2 ljknjk
� �

þ 1
2 lpjnpj þ 1

2 lpknpk
� �

þ 1
2 lkpnkp þ 1

2 lkjnkj
� �

.
However, since ljpnjp þ lpjnpj ¼ 0, all terms cancel and therefore ljrnjr þ lprnpr þ lkrnkr ¼ 0. This equality is the geometrical
interpretation of the general property (6).

In theory it is also possible to reinterpret the standard finite volume construction in our framework: by a standard Finite
Volume method we mean a scheme for which the fluxes are computed and applied through the edges. Geometrically it
corresponds to the Fig. 5. Then (5) is a sum over all the neighboring cells: it is still zero since the cell is a closed contour.
On the other hand (6) becomes ljknjk þ lkjnkj ¼ 0 for all k. A partial conclusion of the previous discussion is that node based



Fig. 3. Cutting the edges in two pieces.

Fig. 4. Checking formula (6).
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quantities are convenient for 2D Lagrangian computations. So we base our extension in dimension d ¼ 3 directly on the node
based vectors Cjr .

2.4. Computation of Cjr in 3D

In dimension d ¼ 3, the computation of the vectors Cjr is slightly more difficult. Indeed non-planar faces are possible: the
computation of the total volume of a cell requires to define precisely the geometry of the polyhedron as it was discussed
before. Assuming that one is able to decompose the volume in a sum of tetrahedra, then it is enough to compute the Cjr

in a consistent way for all tetrahedra and then to sum up these vectors. In Appendix A we indicate possibilities for the com-
putation of the Cjr for hexahedrons with warped faces. The case of a tetrahedron is based on the following formulas. Consider
a tetrahedron j with vertices r ¼ 1;2;3 and 4. One has
Vj ¼
1
6

x2 � x1 x3 � x1 x4 � x1

y2 � y1 y3 � y1 y4 � y1

z2 � z1 z3 � z1 z4 � z1

�������
������� ¼

1
6

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

���������

���������:



Fig. 5. Standard finite volume construction.

G. Carré et al. / Journal of Computational Physics 228 (2009) 5160–5183 5165
So using (2) and differentiating according to x1, one gets
Cj1 ¼
1
6

y2 y3 y4

z2 z3 z4

1 1 1

�������
�������;�

x2 x3 x4

z2 z3 z4

1 1 1

�������
�������;

x2 x3 x4

y2 y3 y4

1 1 1

�������
�������

0B@
1CA

t

:

One notes that Cj1 is normal to the opposite face ðx2;x3;x4Þ of x1. Its norm is one third of the area of the opposite face. The
other vectors Cjr for r ¼ 2;3;4 are identical up to a permutation of the indices.

3. The GLACE scheme

The GLACE scheme is a one step forward Euler method that discretizes the Lagrangian equations (1). The only information
we need at the beginning of time step k is the knowledge of the vertices xk

r of the mesh, the vectors Ck
jr and the values of the

physical unknowns inside the cells
qk
j ;u

k
j ; e

k
j ; 8j:
The unknowns are constants in each cell, that is the scheme is cell-centered. We show below how to compute the unknowns
at the end of the time step
qkþ1
j ;ukþ1

j ; ekþ1
j ; 8j;
in a compatible way with the mesh displacement xkþ1
r ¼ xk

r þ Dt uk
r where the node velocity uk

r is to be defined.

3.1. Discretization of the divergence operator

The formula for the variation of the volume implicitly contains a discretization of the divergence operator. For the sake of
simplicity of the presentation, we discuss this property in the semi-discrete context. Indeed the mass of a Lagrangian cell is
constant in time: VjðxðtÞÞqjðtÞ ¼ Mj is independent of the time t. Let us now define sj ¼ 1

qj
the specific volume. Then
Mjs0jðtÞ ¼
d
dt

VjðxðtÞÞ ¼
X

r

ðCjr ;urÞ:
The hydrodynamics equations (1) imply q d
dt s ¼ r � u. It means that

P
rðCjr;urÞ is an approximation in the finite volume sense

of r � u over the moving cell j
Z
Vj

r � u dx ¼
Z
@Vj

ðu;nÞ dr �
X

r

ðCjr ;urÞ:
3.2. Discretization of the gradient operator

Consider the bilinear form ðu; pÞ#
R
@Vj
ðu;nÞpdr which represents the work of the pressure across the moving boundary.

At the discrete level this quantity is
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Z
Vj

r � ðpuÞdr ¼
Z
@Vj

ðu;nÞp dr �
X

r

ðCjr;urÞpjr ¼
X

r

ður;CjrpjrÞ;
where pjr is the pressure at vertex xr seen from the cell j which will be defined later. Assuming that the velocity is constant
(=u), one gets
Z

Vj

r � ðpuÞdr ¼ u;
Z

Vj

rp dx

 !
� u;

X
r

Cjrpjr

 !
:

It implies that
Z
Vj

rp dx ¼
Z
@Vj

npdr �
X

r

Cjrpjr
is the discrete approximation of the gradient of the pressure. The discrete gradient operator is the adjoint of the discrete
divergence operator, as in the support operator method [34,5]. In principle one could argue that the node pressure should
be the same for all cells around the same vertex xr: that is pjr ¼ pr for all j. This is not possible in the general case for reasons
that have been explained in [13]. At this point we obtain a possible semi-discrete numerical approximation of the continuous
system (1)
Mjs0jðtÞ ¼
P

r
ðCjr ;urÞ;

Mju0jðtÞ ¼ �
P

r
Cjrpjr;

Mje0jðtÞ ¼ �
P

r
ðCjr;urÞpjr:

8>>>><>>>>: ð9Þ
The first equation is the discretization of the mass conservation relation, and reflects the compatibility of the method with
the discretization of the volume conservation equation which is the fourth equation of (1). The last two equations are the
semi-discrete version of the momentum and total energy equations. This formulation is similar but different to the one pur-
sued in [22,24]. It remains to close the problem with a convenient definition of the velocity of the vertices ur and the pres-
sures pjr which are both node based quantities.

3.3. The nodal solver

In order to determine the velocity ur of the vertices and the node pressures pjr (see Fig. 6), we generalize what has been
proposed in [13].

The nodal solver is based on two different formulas. The first formula (10) is a multidimensional generalization of a first-
order Riemann solver, but in the direction parallel to the vector Cjr . So we assume a linearized-Riemann-invariant relation in
the direction of Cjr
pjr � pj þ ajrður � uj;njrÞ ¼ 0: ð10Þ
By definition the normal vector njr is such that
Fig. 6. Nodal velocities and nodal pressures.
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njr ¼
Cjr

jCjr j
; jnjrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnjr ;njrÞ

q
¼ 1:
This relation is an approximation of the Rankine Hugoniot relations for shock hydrodynamics in dimension one, and is com-
monly used for the design of Godunov solvers. A priori the coefficient ajr is defined as the acoustic impedance
ajr ¼ qjcj ð11Þ
where cj is the sound speed in cell j: c2 ¼ @p
@qjS and S is the entropy. In this formula ajr does not depend upon the node index r.

However other determinations of ajr are possible. In Section 6.2 we will describe one of them. The second formula, needed to
construct the nodal solver for the integration of (9), expresses that the sum of all forces around the vertex xr is zero
X

j

Cjrpjr ¼ 0: ð12Þ
This formula is natural in the context of Lagrangian methods because it enforces the conservation of momentum, see Prop-
osition 3.

The solution of the set of equations (10)–(12) is easy to compute. Using (10) one can eliminate the pressures in (12). One
gets a linear system
Arur ¼ br: ð13Þ
The unknown vector is the node velocity ur 2 Rd. The matrix is
Ar ¼
X

j

qjcj
Cjr � Cjr

jCjrj
2 Rd�d: ð14Þ
By construction Ar ¼ At
r is non negative. If the mesh is non degenerate then Ar > 0. Let us be more precise. Assume for exam-

ple that Arur ¼ 0, which implies that
ður ;ArurÞ ¼
X

j

qjcj
ðCjr;urÞ2

jCjr j
¼ 0) ðCjr ;urÞ ¼ 0 8j: ð15Þ
Due to the equality (6) the vectors Cjr are linearly dependent. If the number of these linearly dependent vectors is greater or
equal to dþ 1 then it is enough, in the general case, to generate a basis of Rd, which implies that ur ¼ 0. In summary the
general case is that if dþ 1 cells connect to the vertex xr , then the matrix Ar is non-singular. The right hand side is
br ¼
X

j

Cjrpj þ
X

j

qjcj
Cjr � Cjr

jCjrj
uj 2 Rd: ð16Þ
The solution of the linear system is
ur ¼ A�1
r br : ð17Þ
Once the nodal velocities ur have been calculated, one computes the nodal pressures pjr using (10)
pjr ¼ pj þ qjcjður � uj;njrÞ: ð18Þ
3.4. First-order GLACE scheme

The first-order GLACE scheme is the following:

(1) At the beginning of the time step one computes the geometrical vectors Ck
jr for all j; r, as a function of the vertices xk

r

(Sections 2.1, 2.2, 2.4 and Appendix A).
(2) Then one determines the nodal velocities uk

r and the nodal pressures pk
jr using the nodal solver (17) and (18).

(3) It is enough to update the total momentum and the total energy. For the momentum one uses
Mj

ukþ1
j � uk

j

Dt
¼ �

X
r

Ck
jrp

k
jr : ð19Þ

The total energy is updated with

Mj

ekþ1
j � ek

j

Dt
¼ �

X
r

Ck
jr ;u

k
r

� �
pk

jr: ð20Þ
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(4) Then the vertices are moved
xkþ1
r ¼ xk

r þ Dt uk
r ð21Þ

and one computes the new volume Vkþ1
j .
(5) Finally the new density in the cell is computed
qkþ1
j ¼ Mj

Vkþ1
j

: ð22Þ
4. Boundary conditions

Since GLACE is based on a nodal solver, the implementation of boundary conditions requires a special treatment. The ma-
jor difficulty comes from the corners of the computational domain: at such a corner two different boundary conditions can
interact. Another practical problem is that the matrix Ar defined in (14) may become singular at the boundary because Ar

does not contain any information about the boundary condition. It is illustrated in Fig. 7. For this very simple mesh Ar is
by construction singular at all vertices: Ar is the sum of two rank one matrices at x4 and is a rank one matrix at x1. But
of course if a proper boundary condition is considered, it can be enough to obtained a well posed problem at the boundary.
This is indeed the case. We propose to rely on the following approach which is adapted to many practical situations. The
method aims at a correct discretization of the boundary condition by means of the definition of a new non-singular matrixfAr and a new right hand side fbr , so that the node velocity is the solution of the non-singular discrete linear system
fAr ur ¼ fbr : ð23Þ
The main motivation for using this method is that it is convenient for implementation considerations since the boundary
nodes can be treated like interior nodes, once fAr and fbr have been defined.

4.1. Sliding on a plane

Consider Fig. 8 where node xr is constrained to move only on the boundary plane xOy. The node velocity ur is orthogonal
to the exterior normal n
ður ;nÞ ¼ 0: ð24Þ
We consider that the projection, tangentially to the plane, of the sum of forces must vanish
X
j

ðCjrpjr; tÞ ¼ 0; for all t such that ðt;nÞ ¼ 0: ð25Þ
This is a projected version of the action–reaction law (12). Let us assume that relation (18) holds as before
pjr ¼ pj þ qjcjður � uj;njrÞ: ð26Þ
So we get a new linear system (24)–(26). It can be proved that this linear system has a unique solution in the general case
(that is when d cells impinge on xr). Our method to prove this property is based on a reformulation of the boundary condition
with a new matrix fAr (and a new right hand side fbr ) such that fAr is non-singular by construction.
Fig. 7. Degenerated matrix Ar.



Fig. 8. Sliding on a plane.
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Let us assume that Ar and br have already been calculated by (17) and (18). Then we define a new matrix
fAr ¼ ðI � n� nÞArðI � n� nÞ þ trðArÞn� n ¼ fAr
t ð27Þ
and a new right hand side
fbr ¼ ðI � n� nÞbr: ð28Þ
Remark 1. In Eq. (27), trðArÞ is used to ensure that the condition number of fAr is not too large. At least the condition number
is independent of the scaling Ar  kAr .

In the general case the matrix fAr is non-singular. This is a consequence of the following property.

Proposition 2. The vector ur solution of fAr ur ¼ fbr is also the solution of discrete equations at the boundary, that is (24) which is
the sliding condition, (25) which is the action–reaction law tangentially to the plane, and (26) which is the acoustic solver in the
corner direction.

The new linear system writes
½ðI � n� nÞArðI � n� nÞ þ trðArÞn� n�ur ¼ ðI � n� nÞbr: ð29Þ
Take the scalar product of (29) with the normal vector n: then trðArÞðn;urÞ ¼ 0. Since Ar is symmetric non negative, then
Ar ¼ 0 if and only if trðArÞ ¼ 0. But there exists always at least one cell impinging on vertex xr . This is clear on Fig. 7 which
is perhaps the most singular configuration. So Ar – 0 and trðArÞ – 0. It implies the sliding condition (24). Since
ðI � n� nÞt ¼ t and ðn� nÞt ¼ 0, the Eq. (29) simplifies into ðI � n� nÞArur ¼ ðI � n� nÞbr . Take the scalar product of
(29) against any tangent vector t orthogonal to the normal n. One gets ðt;ArurÞ ¼ ðt;brÞ. By construction of Ar and since
the pressures are computed using (26), one has Arur ¼

P
jCjrpjr . It implies (25). This ends the proof.

4.2. Sliding on a line

This case is treated with the same method. We modify the matrix and the right hand side.
The node slides parallel to the tangent vector t which is orthogonal to both normals
ðt;n1Þ ¼ ðt;n2Þ ¼ 0:
The planes are not necessarily orthogonal: that is ðn1;n2Þ– 0 is possible. Let us define the new non-singular matrix
fAr ¼ ðt� tÞArðt� tÞ þ trðArÞðI � t� tÞ
and the new right hand side
fbr ¼ ðt� tÞbr ¼ ðt;brÞt:
The nodal velocity on the line is defined as the unique solution of fAr ur ¼ fbr (see Fig. 9).

4.3. Given pressure

The situation is different from the previous ones. Let us assume that an external pressure pext is imposed on the vertex xr ,
as described in Fig. 10.



Fig. 9. Sliding on a line.

Fig. 10. Given pressure pext at the boundary.
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We consider that the sum of the forces around xr is zero
X
j

Cjrpjr þ �
X

j

Cjr

 !
pext ¼ 0:
The vector �
P

jCjr is the external surface at xr on which the external given pressure must be applied. One has
P

jCjr – 0

because the total volume changes (the mesh moves at xr). In this case it is sufficient to keep the same matrix fAr ¼ Ar but
to modify the right hand side
fbr ¼ br �

X
j

Cjrpext: ð30Þ
4.4. Mixed condition

The problem arises at the corners, as described in Fig. 11 in dimension d ¼ 2. The problem is the same in dimension d ¼ 3.
At x1 two different boundaries interact. A given external pressure pext is imposed on the boundary. The other boundary con-
dition on the wall is a sliding condition.

A solution is easily computed as follows. In a first step we modify the right hand side with (30) keeping the same matrix.
Then we modify the matrix and the right hand side using the sliding method (27) and (28). So the right hand side is modified
twice. Then we solve (23).

5. Main theoretical properties

As for any Lagrangian method, conservation and compatibility with the entropy condition are essential properties.



Fig. 11. Mixed conditions applied on vertex x1.

G. Carré et al. / Journal of Computational Physics 228 (2009) 5160–5183 5171
5.1. Conservativity

Proposition 3. By construction, the GLACE scheme is conservative in total mass, total momentum and total energy.

This property is true up to boundary conditions of course. Therefore we forget about boundary conditions and concentrate
on the key features of the scheme. By construction GLACE is of course conservative for the mass of each cell, so the total mass
is also preserved.

Concerning the total momentum one has
X
j

Mj

ukþ1
j � uk

j

Dt
¼
X

j

�
X

r

Ck
jrp

k
jr

 !
¼ �

X
r

X
j

Ck
jrp

k
jr

 !
:

One equation of the nodal solver is (12):
P

jC
k
jrp

k
jr ¼ 0. Hence the total momentum is preserved

P
jMjukþ1

j ¼
P

jMjuk
j . Concern-

ing the total energy one has
X
j

Mj

ekþ1
j � ek

j

Dt
¼
X

j

�
X

r

Ck
jr ;u

k
r

� �
pk

jr

 !
¼ �

X
r

X
j

Ck
jrp

k
jr;u

k
r

 !
:

Under the same condition, one gets the conservation relation
P

jMjekþ1
j ¼

P
jMjek

j .

5.2. Compatibility with the entropy condition

The compatibility of the scheme with the entropy condition is an important property of any Lagrangian method. It guar-
antees a correct physical behavior of the cell, and also gives some indications that the method is stable. In what follows we
show that the semi-discrete GLACE scheme is such that the entropy increases in the cell, that is d

dt Sj P 0. For a discrete
scheme in space and time, the estimate is much more difficult to obtain [13]: it involves the CFL condition.

Let us assume that the pressure law is compatible with the fundamental principle of thermodynamics
TdS ¼ deþ pds:
The entropy is S; e ¼ e� 1
2 juj

2 is the internal energy and the temperature is T > 0.

Proposition 4. The semi-discrete GLACE scheme (9) is compatible with the entropy condition. This property remains valid with
any boundary conditions such that these boundary conditions are compatible with Eq. (10).

One has Tj
d
dt Sj ¼ e0j þ pjs0j ¼ pjs0j � uj;u0j

� �
þ e0j. Therefore MjTj

d
dt Sj ¼ pj

P
rðCjr;urÞ þ ðuj;

P
rCjrpjrÞ �

P
rðCjr;urÞpjr . On the

other hand one has
P

rðCjr;ujÞpj ¼ 0 since
P

rCjr ¼ 0. After elementary manipulations one gets
MjTj
d
dt

Sj ¼
X

r

ðCjr;ur � ujÞðpj � pjrÞ:
Eq. (10) implies that ðCjr;ur � ujÞ and pj � pjr have the same sign, so that MjTj
d
dt Sj P 0, and the proof is completed.

This property explains why the scheme has no need of any artificial viscosity technique to be able to handle shocks. By
construction the scheme generates entropy and is conservative. The theory of conservation laws [20] shows that it is suffi-
cient to be compatible with the Rankine Hugoniot relations for discontinuous solutions.
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Nevertheless the compatibility of the entropy, as stated in the proposition, is not enough. It is important to verify that the
increase of entropy is not too large, in particular for smooth compression flows or for rarefaction waves. We have two an-
swers: (a) we have checked on a large number of test problems that the entropy production is moderate. In particular we
have compared with the Caveat scheme [3] and also with the first-order scheme [22]. See the discussion for smooth com-
pression flow in Section 8.6; (b) as usual in computational fluid dynamics, a second-order MUSCL extension of the scheme
allows for a better accuracy for smooth flows, in particular for rarefaction waves. We have developed such a MUSCL proce-
dure that we will explain below.

6. Time step considerations and geometrical correction

For Lagrangian computations, an efficient control of the time step is important to obtain the hydrodynamic stability of the
method (that is stability of thermodynamic quantities like density, pressure,. . .) and the stability of the mesh (because a
moving mesh is very sensitive to spurious mesh displacements). We also show how to introduce a simple geometrical cor-
rection so that GLACE is equal to the standard 1D Godunov scheme on Cartesian meshes (grids).

6.1. CFL restriction

Since the method is explicit, a CFL condition is needed [3]. In practice this condition takes the form cj
Dt
Dxj
6 CFL for all j,

where Dxj is a local length for cell j; cj is the local sound speed and CFL 6 1. As usual the definition of Dxj is not obvious
for an unstructured mesh. In practice a local evaluation based on the radius of the inscribed circle is possible, following
the so-called ‘‘worst guess” principle. Since our second-order extension, described in Section 7, is based on a Lax–Wendroff
procedure (the second-order Lax–Wendroff scheme and the first-order Donor cell scheme for linear transport are stable un-
der the same CFL condition) we impose the same CFL restriction for both the first-order GLACE scheme and the second-order
extension. It is also possible to add time step restriction based on volume variation as described in [24].

6.2. The geometrical correction kj

The idea which is pursued in this section is that it may be worthwhile that the first-order GLACE scheme degenerates
exactly to the first-order Godunov acoustic solver on Cartesian geometries (grid). Let us point out that there is no theoretical
reason to impose that the scheme degenerates in simple geometries to the exact acoustic solver: in our mind it is rather a
comfortable framework since it is more easy to calibrate the scheme on simple 1D test problems with this modification. The
proposed procedure does not change the consistency of the scheme, in the sense that the solution at convergence is the
same. On the other hand this procedure modifies the viscosity of the scheme. So it may have impact on the stability and
on the effective diffusivity of the scheme. Another interest of this study is that it shows the influence of the aspect ratio
of the mesh on the resulting scheme.

The main idea is to introduce kj a free parameter (a priori close to 1) and to modify ajr which becomes ajr ¼ qjcjkj. What
we propose is to replace the discrete relation (18) by
pjr ¼ pj þ qjcjkjður � ujnjrÞ; where kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r
jCjr j

lj

vuut ð31Þ
and lj is the largest eigenvalue of the matrix Bj ¼
P

r
Cjr�Cjr

jCjr j
. The matrix Bj 2 R3�3 is symmetric positive definite in the general

case. Note that kj is non dimensional. We have observed in all our simulations that kj 2 1;
ffiffiffi
3
ph i

. A proof that kj 2 1;
ffiffiffi
2
ph i

exists in dimension d ¼ 2. In practice we first compute lj with Cardan’s formulas, with a careful elimination of the singular-
ities. Then we compute kj.

Proposition 5. Assume that the mesh is structured, that is j ¼ ðj1; j2; j3Þ with j1; j2; j3 2 Z. Consider a 1D flow in the x direction,
and assume that the mesh size is everywhere smaller in the x direction than in the y and z directions, that is Dxj < Dyj and
Dxj < Dzj. Consider the scheme with kj given by (31). Then the scheme is equivalent to the 1D Godunov acoustic scheme
pj1þ1
2
¼ qj1þ1cj1þ1pjþqj1

cj1
pj1þ1

qj1
cj1
þqj1þ1cj1þ1

þ qj1
cj1

qj1þ1cj1þ1

qj1
cj1
þqj1þ1cj1þ1

ðuj1 � uj1þ1Þ;

uj1þ1
2
¼ qj1

cj1
ujþqj1þ1cj1þ1ujþ1

qj1
cj1
þqj1þ1cj1þ1

þ 1
qj1

cj1
þqj1þ1cj1þ1

ðpj1
� pj1þ1Þ:

8><>: ð32Þ
The proof is a bit technical and is given in the appendix. If kj is not set to the optimal value (31), then the viscosity coef-
ficient in the formulas (32) is premultiplied by a bounded factor kj and 1

kj
.

Assume now that the grid is such that
10 minðDy;DzÞP Dx > maxðDy;DzÞ
(this is just an indication, it depends on the test problem), then the previous proposition does not apply. However we have
observed that the scheme behaves well in this case and we see a similar behavior with respect to the standard Godunov
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scheme in the x direction. But if Dx	maxðDy;DzÞ, then the results may show a important dependence with respect to the
aspect ratio, both in term of stability and accuracy. However, it must be noticed that all the theoretical properties are true
(entropy, conservativity,. . .) with or without this small geometrical correction.

In practice we use the correction (31) systematically on all meshes. If the second-order extension is used, it is reasonable
to think that the influence of the aspect ratio of the mesh is less important.

7. Second-order extension

In this section we describe the MUSCL type second-order extension of the first-order GLACE scheme. Essentially this is
based on the seminal ideas of Van Leer applied in the Lagrangian context [3]. The method that we have chosen has the
advantage to be a one step scheme, which means we do not use a Runge–Kutta two-step integration scheme. The results
in 1D for the Sod shock tube problem show that it provides the usual gain of accuracy with respect to a first-order scheme.

7.1. Slope reconstruction and limitation

The idea is very natural. In all cells, one reconstructs an affine function x#�pjðxÞ for the pressure
�pjðxÞ ¼ pj þ ðrpj;x� xjÞ;
and also for the velocity �ujðxÞ ¼ uj þrujðx� xjÞ. The quantity rpj is a pressure gradient. We reconstruct this gradient from
the neighboring values. Many ways are possible to do so. In practice we prefer to construct first a node gradient
rpr ¼
P

jCjrpj

Vjr
;

where Vjr is a control volume around node xr: the only constraint is
P

rVjr ¼ Vj. One can use the standard definition of the
control volume in staggered schemes [3,6,9] where the centers of the faces determines the limit of control volumes. Then we
average the node gradient to obtain an approximate cell gradient
rpj ¼
P

rrprP
r1

:

This is quite a crude way to compute a local gradient. However it has been proved to be accurate enough and very robust. We

perform the same reconstruction for the velocity. It gives rur ¼
P

j
Cjr�uj

V jr
and ruj ¼

P
r
rurP
r
1

.

Once this is done, we limit these quantities with the Dukowicz algorithm [15]. That is rpj is damped and becomes:
rpj  rjrpj; 0 6 rj 6 1. Many other limitation procedures are possible [37], as usual in hydrodynamics codes.

However the spatial limitation might not be enough to obtain stability in all cases. By analogy with the Lax–Wendroff
scheme for linear advection, we introduce another factor 1� mj (mj is the local CFL number). For example the final recon-
structed pressure is now
�pjðxÞ ¼ pj þ ð1� mjÞrjðrpj; x� xjÞ; 0 6 mj 6 1:
The same factor is applied to the reconstructed velocity, with the exception that for flows and meshes which rotational sym-
metries it can be better to limit the gradient of the velocity only in the radial direction. This tensorial limitation procedure is
known to be much better in 2D on equi-sectorial meshes. It must be noticed that the situation is less clear in 3D because such
perfect equi-sectorial meshes cannot exist.

7.2. Second-order nodal solver

Assume now that the reconstructed cell pressure and the reconstructed cell velocity are available. Then we use them di-
rectly in the nodal solver, that is we consider the solution ður; pjrÞ of: pjr � �pjðxrÞ þ ajrður � �ujðxrÞ;njrÞ ¼ 0, and

P
jCjrpjr ¼ 0. Up

to these small modifications, we proceed as in Section 3.3. That is pjr and ur are computed after inversion of a linear system.
An advantage of the overall procedure is its natural compatibility with the boundary conditions. The method is simple to

use, and inexpensive with respect to CPU considerations. We found an important gain of accuracy using it, specially in rar-
efaction fans.
8. Numerical results

We discuss basic test problems for Lagrangian flows.
A first series of problems is computed on grids. The 1D test problem has been computed with the 3D scheme with a mesh

similar to the one depicted in Fig. 7 and in the configuration described in Proposition 5. We show the results computed on a
3D grid for the Saltzmann problem and for the Sedov problem. These problems are challenging ones for Lagrangian methods
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since the mesh is not aligned with the flow, see for example [8] where it is shown that spurious jets may exist along the axis.
We have observed that if the calculation is done with a second-order extension, then the numerical results are quite good.

A second series of tests is characteristic of calculations on 3D spherical meshes for Inertial Confinement Fusion applica-
tions. The 2D and 3D Kidder test problem is to assess the numerical convergence of the method. The meshes of the 1

8 of the
sphere that we use are symmetric with respect to the reduced connectivity line. The reduced connectivity line is the set of
vertices behind the reduced connectivity point which is visible at the internal face of the mesh for the thin shell problem: it
coincides with the middle of the internal face. It must be noted that the design of such meshes in 3D makes necessary the
incorporation of this reduced connectivity point. The Cjr are computed with the isoparametric representation.

8.1. Sod 1D

This test case is the very classical 1D Sod shock tube [35]. It is a simple Riemann problem. It involves a perfect gas with an
adiabatic constant c ¼ 1:4. The initial conditions are U0ðx < 0:5Þ ¼ Ul and U0ðx > 0:5Þ ¼ Ur with Ul ¼ ðql ¼ 1;ul ¼ 0; pl ¼ 1Þ
and Ur ¼ ðqr ¼ 0:125;ur ¼ 0; pr ¼ 0:1Þ. The results for the density are compared to the analytical solution on Fig. 12 for
the Lagrangian second-order GLACE scheme. We observe a very good accuracy between the discrete solution and the exact
solution. It is an immediate consequence of the property 5 which guarantees that the scheme is equal to a standard Godunov
scheme in 1D, provided the mesh is fine in the longitudinal direction which is the case since Dx 6 minðDy;DzÞ. So the result is
similar to the results obtained with any 1D second-order Godunov method. In Fig. 13 we plot the result computed with the
Fig. 12. The 1D Sod shock tube problem. Comparison with the reference solution (plain line) of the density profiles at t ¼ 0:2s for the order 2 scheme with a
Dukowicz limiter (symbols).

Fig. 13. The 1D Sod shock tube problem. First- and second-order but without temporal limitation (some oscillations are visible at the shock). The second-
order scheme without the temporal limitation is already more accurate in the rarefaction fan.
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first-order scheme (the dissipativity is visible in the rarefaction fan) and the results computed with the second-order scheme
but without the temporal limitation. An extra oscillation is visible at the shock. This is one of the reason why we use the
temporal limitation in all calculations.

8.2. Saltzmann 3D on a skewed grid

The Saltzmann test problem is a severe shock tube problem computed on a distorted mesh. It is known to be quite
demanding in term of stability. The data are described in [7]. At t ¼ 0, the density is q ¼ 1, the pressure is � 0 (10�6 in prac-
tice), the velocity is 0. The piston’s velocity is 1. The mesh is skewed, that is
Fig. 14.
q ¼ 1 b
x ¼ 0:1ðl� 1Þ þ 0:01ð11� kÞð6�mÞ=5 sinð0:01ðl� 1ÞÞ; 1 6 m 6 6;
x ¼ 0:1ðl� 1Þ þ 0:01ðk� 1Þðm� 6Þ=5 sinð0:01ðl� 1ÞÞ; 7 6 m 6 11;
y ¼ 0:01ðm� 1Þ;
z ¼ 0:01ðk� 1Þ

8>>><>>>:

where 1 6 k;m 6 11 and 1 6 l 6 101. The analytical value of the density after the first shock is cþ1

c�1 ¼ 4 since c ¼ 5
3. For this

problem we noticed that the deformations of the mesh are more important with the first-order scheme than with the sec-
ond-order scheme. The result is provided in Fig. 14 at time t ¼ 0:7. We observe an average density of about 4 with some spu-
rious values near the skewed sliding lines.

8.3. 3D blast wave

A challenging problem for Lagrangian methods is the 3D blast wave problem (Sedov problem) on a grid. A very strong
shock propagates from the center on the domain. We refer to the recent works [33,23,8] for uptodate references. The prob-
lem can be quite difficult for Lagrangian methods because spurious jets might introduce some important non accuracy. This
behavior is common to many Lagrangian schemes: it has forced some authors to use regularization methods or to add extra-
viscous contributions in the solver. In the following numerical experiments, we have used that data given in [33]. The mesh
is made of 203 cells on a grid ½0;1:1�3. The parameter of the pressure law is c ¼ 7

5. The distribution of the internal energy that
was adopted is the regularized one from [33], that is
pð0;0;0Þ ¼ 27
64� 1010; pð1;0;0Þ ¼ pð0;1;0Þ ¼ pð0;0;1Þ ¼ 9

64� 1010;

pð1;1;1Þ ¼ 1
64� 1010; pð1;1;0Þ ¼ pð0;1;1Þ ¼ pð1;0;1Þ ¼ 3

64� 1010:

(

By convention (0,0,0) is the numbering of the corner cell. Our results computed with the second-order scheme is provided on
the left part of Fig. 15. No other regularization was necessary. The accuracy provided by the second-order extension is en-
ough to capture the correct solution. Some discrepancy is nevertheless visible on the figure at 45 degrees on the facets of the
domain.

We also compute the an equivalent 3D Sedov-like blast wave problem on the 1
8th of the sphere (see also Fig. 15). The mesh

is 100 layers� 75 sectors ¼ 7500 cells. The angular discretization of the mesh is 9 degrees (measured on the boundaries).
The initial data are q ¼ p ¼ 1 everywhere except in the central layer ðr 6 0:01Þ where q ¼ 1 and p ¼ 1010. We used the
first-order scheme with sliding walls on the boundaries. With the second-order scheme the mesh is almost the same. We
compare in Fig. 16 the result with a reference solution. The final time is t ¼ 0:00145. We have plot the density for all the
radius of the simulation on the Fig. 16. At the final time the symmetry of the mesh is very good since all curves are almost
identical, despite of the reduce connectivity point (and also very close to the reference solution).
The 3D Saltzmann problem computed with the second-order GLACE scheme. The time is t ¼ 0:7. The analytical solution is q ¼ 4 after the shock, and
efore the shock.



Fig. 15. A 3D blast wave at time t ¼ 1:510�4. Left: using a spherical mesh. Right: using a grid made with 203 cells.
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8.4. The Kidder problem

We give the result of convergence tests for the Kidder problem in 2D and 3D (see [23] for instance). A portion of a shell
ri ¼ 0:9 6 r 6 1 ¼ re is filled with a perfect gas. The adiabatic constant of the gas is c ¼ 2 in 2D and c ¼ 5

3 in 3D. At t ¼ 0, the

initial density is q0ðrÞ ¼
r2

e�r2

r2
e�r2

i
qc�1

i þ r2�r2
i

r2
e�r2

i
qc�1

e

� � 1
c�1

, with qi ¼ 1 and qe ¼ 2. The initial pressure is p0ðrÞ ¼ q0ðrÞ
c. The initial en-

tropy is uniform s0 ¼ p0
qc

0
¼ 1. The velocity is u0 ¼ 0 at t ¼ 0. The boundary conditions are: sliding walls on the lateral faces; a

given exterior pressure at the internal frontier piðtÞ ¼ p0ðriÞhðtÞ�
2c
c�1; and a given exterior pressure at the external frontier

peðtÞ ¼ p0ðreÞhðtÞ�
2c
c�1. Let us denote c the sound speed. The solution is known [23] to be an isentropic compression

s ¼ p
qc ¼ 1

� �
such that the position at time t > 0 is Rðr; tÞ ¼ hðtÞr, where the homothety rate is hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

s2
foc

q
and the focali-

sation time is sfoc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc�1Þðr2

e�r2
i
Þ

2ðc2
i
�c2

e Þ

r
.

In Fig. 17 we display the mesh at t ¼ 0 and at the final time of the simulation tf ¼
ffiffi
3
p

2 sfoc, so that the compression rate is
hðtf Þ ¼ 0:5 in both cases. Therefore the analytical solution at tf is a shell 0:45 6 R 6 0:5. In Fig. 18 we compare the analytical
position of the external and internal boundaries with the numerical ones calculated with the low resolution meshes (see
below the definition of M1 and N1) and with the first-order scheme.

Finally we record in Table 1 the mean value of the external and internal radiuses. In 2D we used four meshes: M1 is a
10� 10 ¼ 100 cells mesh, that is 10 sectors and 10 layers; M2 is 20� 20 ¼ 400 cells; M3 is 40� 40 ¼ 1600 cells; and finally
M4 is 80� 80 ¼ 6400 cells. In 3D we use three meshes: the first mesh N1 has 10 sectors per facets and 5 layers, since the
exterior and interior boundary are designed with 3 square meshes, then the total number of cells is 3� 5�
10� 10 ¼ 1500 cells; then we double the number of cells in each direction, that N2 is a 12,000 cells mesh; and finally N3

is a 96,000 cells mesh. The order is one ðO1Þ or two ðO2Þ. We observe convergence of the numerical solution to the exact
one in 2D and 3D. The accuracy of the numerical solution computed with the second order scheme O2 is similar or better
than the accuracy of the O1 scheme with the mesh just coarser in the list. The experimental order of the convergence is



Fig. 17. Initial condition and final solution for the Kidder problem. 2D on the left, 3D on the right. The data are normalized so that the homothety factor is
exactly 1

2 in both cases.

Fig. 18. The analytical solution is the continuous line, the discrete solution is plotted with symbols. On the left the 2D curves for the mesh M1 and the first-
order O1 scheme. On the right the 3D curves for the mesh N1 and the order O1.

Table 1
Convergence of the numerical solution towards the exact solution, in function of the order of the scheme (O1 and O2) and of the mesh. The order of convergence
is systematically computed with the two last meshes in the list (that is M3M4 or N2N3).

Dimension Mesh Order riðtf Þ reðtf Þ Order riðtf Þ reðtf Þ

2 M1 O1 0.4223 0.4820 O2 0.4343 0.4880
2 M2 O1 0.4392 0.4937 O2 0.4458 0.4966
2 M3 O1 0.4453 0.4975 O2 0.4487 0.4991
2 M4 O1 0.4478 0.4989 O2 0.4495 0.4997

Convergence order �1.09 �1.18 �1.37 �1.58
3 N1 O1 0.4133 0.4833 O2 0.4269 0.4885
3 N2 O1 0.4339 0.4929 O2 0.4422 0.4963
3 N3 O1 0.4424 0.4967 O2 0.4472 0.4987
Convergence order �1.08 �1.10 �1.47 �1.50

G. Carré et al. / Journal of Computational Physics 228 (2009) 5160–5183 5177
� 1 for O1, and is � 1:5 for the second-order extension O2. In some cases the first order Glace scheme behaves like a second-
order scheme. The reason is that the approximation of the geometry may be the dominant error: therefore smaller cells allow
for a natural second-order approximation of the geometry. Our experience is that it is always an important contribution to
the global error.

8.5. Noh 3D on a spherical mesh

The Noh test problem is run on the same type of spherical mesh as for the blast wave problem. The size of the internal
cells is multiplied by a factor 5. It helps to stabilize the computation at the center of the domain and to obtain a more regular
mesh at the final time. The number of cells is 95 layers� 75 sectors ¼ 7125. It has been observed in the past that spurious
hourglass modes can arise for the Noh test problem in 2D [25]. Anyway for the low resolution 3D mesh depicted in Fig. 19 we
did not observe any spurious modes.



Fig. 19. The 3D Noh problem. Left: the mesh. Right: a cut of the density computed with the first-order scheme and the second-order scheme. The exact
solution of the plateau is the plain line.
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8.6. A thin shell problem in 3D

Next we compute a quasi-incompressible flow in 3D. The initial mesh is characteristic of a shell R� ¼ 0:95 6 r 6 1 ¼ Rþ.
The initial values are: q ¼ 1; p ¼ 2, and the velocity is directed towards the center u ¼ � 1

r3 r (in 2D u ¼ � 1
r2 r). The initial

velocity is divergence free. The boundary conditions are the following: sliding walls on the planes, and a given pressure
pext ¼ 2 on the internal and external boundaries. This is why the flow is quasi-incompressible. Notice also that this problem
can be run with a stiffened gas pressure law, using the change of dimensions and variables: xþ ¼ R
x; tþ ¼ T
t;qþ ¼
q
q; pþ ¼ R


T

� �2q
p� cp
. If one takes cp
 ¼ R


T

� �2q
pext, then the problem is a high velocity implosion problem with a material

modeled with a stiffened gas equation of state: in this case the exterior pressure is pþext ¼ 0. We refer to [13] for such an
example. A typical result in 3D is given in Fig. 20. The mesh is made of 40 layers� 1200 sectors ¼ 4800 cells. The results
are very accurate. On the figure we also notice a very stable behavior of the reduced connectivity point which is at the center
of the internal boundary.

For such problems the standard first-order Godunov method is known to be very dissipative. In Fig. 21 we compare the
result computed with the first-order GLACE scheme and with the first-order Chic 2D scheme (on this problem [24] and the
CAVEAT scheme are equivalent). We see the extra viscosity for these schemes.

An explanation of this phenomenon is as follows. Consider the mesh depicted in 2D in Fig. 22. For the Godunov scheme
the fluxes are computed on the edges of the mesh. The pressure flux at the edge is p
 � pjþpk

2 þ ðqcÞ
ðuj � uk;n2Þ. The term

ðqcÞ
ðuj � uk;n2Þ is a viscous correction to the mean value. For a radial flow one has uj ¼ �uej ej ¼
Oxj

jOxj j

� �
and

uk ¼ �uek ek ¼ Oxk
jOxk j

� �
, where u > 0 is the absolute value of the velocity. Therefore the viscous contribution is
Fig. 20. The thin shell problem in 3D. The mesh is made with 4800 cells. Top: the mesh at t ¼ 0 and t ¼ 0:52. Bottom: a cut of the density compared with a
reference solution computed with a 1D spherical code.





Fig. 23. The 3D Sod shock tube problem. Mesh at t ¼ 0:2. On the left purely Lagrangian, on the right with layer refinement.
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8.7. Sod 3D on a spherical mesh

The initial data is the Sod shock tube problem in a 3D spherical geometry. The initial mesh is layered in the high-density/
high-pressure exterior zone. In the low-density/low-pressure interior zone, the mesh is continuously transformed into a log-
ical mesh. The initial number of layers in the exterior zone is 20, therefore the resolution is poor in the radial direction.

We perform two calculations. The first calculation is purely Lagrangian. For the second one we use a adaptive mesh
refinement (AMR) technique in the exterior zone: we compare the radial length of the layers with a predefined length equal
to the length at t ¼ 0. If the layer is stretched too much in the radial direction, then we refine it and define two news layers.
The projection method that we used in this calculation is very basic: we simply project with a first-order method. That is the
solution (the conservative quantities) in the refined cells is equal to its value in the mother cell. By construction the total
mass, the total impulse and the total energy is the same before and after the AMR stage of the algorithm. For this problem,
we have observed that such a first-order method is enough to increase a lot the quality of the numerical solution. The devel-
opment of a second-order projection method is less evident.

The results are displayed in Fig. 23. On the left is the purely Lagrangian calculation with a constant number of layers, on
the right is the AMR-Lagrange calculation with an increasing number of layers (32 at the end of the calculation). On Fig. 24
we plot the density profile for a radial cut at the final time t ¼ 0:2. We also plot a reference solution computed with a 1D code
in spherical geometry, and with a large number of cells to get an almost converged solution. We observe that the purely
Lagrangian calculation displays large errors at the focusing shock. But with the refinement technique in the exterior zone,
the shock is captured at the correct position. Our interpretation is of course the better accuracy in the rarefaction fan, even
with the first-order AMR projection method. We can also remark that the refinement technique allows to keep a good cell
aspect ratio (see paragraph 6.2) during the whole calculation which limits the transverse numerical dissipation (which is
known to be penalizing for such computation). Notice also the good aspect ratio of the cells in the radial direction for the
AMR computation, which is compatible with the Proposition 5. It shows the interest of layer refinement for Lagrangian
computations.
Fig. 24. Density profiles for the 3D Sod shock tube problem. Three curves: purely Lagrangian, with layer refinement and reference solution. The calculation
with layer refinement is closer to the reference solution.
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9. Conclusion

In this paper we have presented in detail the mathematical structure of the discrete GLACE scheme for the numerical inte-
gration of Lagrangian compressible fluid dynamics. A basic idea is to have a Finite Volume node based discrete numerical
method, compatible by construction with the displacement of the cells, as in the 2D schemes [13,22]. The 3D GLACE method
is an extension of [13] in any dimension and on arbitrary meshes. In this appendix we describe the formulas for the isopara-
metric representation of an hexahedron. We have also described a simple second-order extension. The numerical tests show
that this procedure is accurate and stable, so it allows to compute basic test problems in 3D. We have explained an important
feature of GLACE: for a simple isentropic compression problem which is a thin shell test problem, GLACE is much less dis-
sipative than the edge based first-order Godunov scheme. The reason is that the normals are corner-based in GLACE, on the
contrary they are edge based for other more standard Godunov methods [1], see also the recent works [22,24]. These issues
are linked with the way the boundary conditions are implemented: for the more standard Lagrangian Godunov methods
[1,22,24] the treatment of the boundary conditions is more immediate since the boundary conditions never interact. For
GLACE we have described in Section 4 how to incorporate all standard Lagrangian boundary conditions in a coherent
way. Since the scheme has low viscosity, the price to pay is somehow less damping of spurious modes (the famous hourglass
modes). With this respect GLACE behaves as the Von Neumann–Richtmyer scheme [26]. For meshes which are portions of
the sphere, the results show a good behavior of the scheme near the reduced connectivity point (or line). Since GLACE is cell-
centered, it is compatible by construction with ALE techniques [3,2] and/or with AMR techniques [20]. It can dramatically
enhance the robustness and accuracy of Lagrangian computations. We will report in a further work dedicated to the coupling
of Glace with these techniques.

Appendix A. Cjr for hexahedra in 3D

Considering eight distinct vertices, there are many ways to define what is an hexahedron. Once a representation and then
a volume are defined, the Cjr vectors are uniquely defined thanks to (2). Notice that the verification of Vj ¼ 1

3

P
rðCjr;xrÞ is not

sufficient to establish to Cjr ¼ rxr V j. In 3D one has as well Vj ¼ 1
3

P
rðCjr þ dr ^ xr ;xrÞ where dr are arbitrary vectors. In what

follows we give a possibility for the definition the geometry of the hexahedron and the associated Cjr . We recall that the
problem comes from non-planar faces. The method uses an isoparametric representation of the hexahedron, for which
the normals are not well defined on the faces of the cell. We recover also the so-called eight nodes hexahedral element
[36,14]. The advantage of our approach with respect to [36] is in the use of the formula (A.1) which simplifies a lot the
calculations.

The isoparametric representation of the hexahedron with possible warped faces represented in Fig. 1 is:
xða; b; cÞ ¼

P8
r¼1xrkrða; b; cÞ where 0 6 a; b; c 6 1. The functions kr are the 8 barycentric functions of the unit reference cube:

k1 ¼ ð1� aÞð1� bÞð1� cÞ, k2 ¼ að1� bÞð1� cÞ, and so on. The vertices of the hexahedron are the xr ¼ ðxr ; yr; zrÞ. The Jacobian
of the transformation is J ¼ det

P8
r¼1xr �rkr

� �
¼ det

P8
r¼1xrrkr ;

P8
r¼1yrrkr ;

P8
r¼1zrrkr

� �
. So the volume of the hexahedron

is
V ¼
Z

06a;b;c61
det

X8

r¼1

xrrkr;
X8

r¼1

yrrkr ;
X8

r¼1

zrrkr

 !
dadbdc:
Let us compute C1
1 the gradient of V with respect to x1 which is the first coordinate of x1. One has
C1
1 ¼ rx1 V ¼

Z
06a;b;c61

det rk1;
X8

r¼1

brrkr ;
X8

s¼1

csrks

 !
dadbdc

¼
X8

r¼2

X8

s¼rþ1

ðbrcs � crbsÞ
Z

06a;b;c61
detðrk1; rkr; rksÞdadbdc:
More generally
C1 ¼ rx1 V ¼
X8

r¼2

X8

s¼rþ1

xr ^ xs

Z
06a;b;c61

detðrk1; rkr; rksÞdadbdc:
One has the identity: detðrk1; rkr ; rksÞ ¼ r:ðk1rkr ^rksÞ. Therefore
Z
06a;b;c61

detðrk1; rkr; rksÞdadbdc ¼
Z
@f06a;b;c61g

k1ðrkr ^rks;nÞdr ðA:1Þ
where n is the outgoing normal of the unit cube. This formula is used to simplify the volume integral. The boundary of the
unit cube is made of 6 different faces. Notice first that the face integrals vanish if the first node a ¼ b ¼ c ¼ 0 (which corre-
sponds to x1 in our numbering) does not belong to the face because k1 vanishes on these faces. So it is sufficient to compute
the face integrals on the three faces which have the first node as a common vertice. Second consider one of these three faces,
for example the face delimited by the vertices 1, 2, 3 and 4 with the notations of Fig. 1. The calculation of the integral can be
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split in three different cases: r ¼ 2 and s ¼ 3; r ¼ 2 and s ¼ 4; r ¼ 3 and s ¼ 4. On this face the outgoing normal is
n ¼ ð0;0;�1Þ. The first case corresponds to A ¼ �

R
06a;b61 k1ð@ak2@bk3 � @bk2@ak3Þdadb. The second case corresponds to

B ¼ �
R

06a;b61 k1ð@ak2@bk4 � @bk2@ak4Þdadb and the third one to C ¼ �
R

06a;b61 k1ð@ak3@bk4 � @bk3@ak4Þdadb. Recall that
k1 ¼ ð1� aÞð1� bÞ; k2 ¼ að1� bÞ; k3 ¼ ab and k4 ¼ ð1� aÞb. Finally A ¼ B ¼ C ¼ 1

12. All coefficients on the other faces are
computed by rotation of the indices.

Appendix B. Proof of property 5

Each cell is parallelepipedic Vj ¼ DxjDyjDzj. The 8 vectors Cjr are
Cjr ¼
1
4

DyjDzjð�exÞ þ
1
4

DxjDzjð�eyÞ þ
1
4

DxjDyjð�ezÞ
where ex; ey and ez are the basis vectors. So for all r
jCjr j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

j Dz2
j þ Dy2

j Dz2
j þ Dx2

j Dx2
j

q
4

:

Therefore the matrix Bj is
Bj ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2
j Dz2

j þ Dy2
j Dz2

j þ Dx2
j Dy2

j

q Dy2
j Dz2

j 0

0 Dx2
j Dz2

j 0

0 0 Dx2
j Dy2

j

0BB@
1CCA ðB:1Þ
In this case the largest eigenvalue of Bj is lj ¼
2Dy2

j
Dz2

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

j
Dz2

j
þDy2

j
Dz2

j
þDx2

j
Dy2

j

p and the coefficient kj defined in (31) is

kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

j
Dz2

j
þDy2

j
Dz2

j
þDx2

j
Dy2

j

p
DyjDzj

. Now consider the correction term kjður � uj;njrÞ ¼ ður � uj; kjnjrÞ in (31). By hypothesis the velocity

uj is oriented in the x direction. By symmetry it is also the case for the vertex velocity ur . It remains to evaluate the corrected
normal kjnjr
kjnjr ¼ kj
Cjr

jCjr j
¼

�1
0
0

0B@
1CAþ Dxj

Dyj

0
�1
0

0B@
1CAþ Dxj

Dzj

0
0
�1

0B@
1CA:
The important consequence is that the coefficient in the x direction is now �1. So the scalar product of kjnjr with ur � uj is
equal to �jur � ujj. Therefore the Eqs. (10)–(12) degenerate (we just drop j2 and j3) to
pj1þ1
2
� pj1

þ qj1
cj1 uj1þ1

2
� uj1

� �
¼ 0;

pj1þ1
2
� pj1þ1 � qj1þ1cj1þ1 uj1þ1

2
� uj1þ1

� �
¼ 0:

8><>: ðB:2Þ
The solution is the standard Godunov acoustic scheme [17,18] in 1D (32). It ends the proof. h
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