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the definition of some geometric vectors which are defined on a moving mesh. The finite
volume solver is node based and compatible with the mesh displacement. We also discuss
boundary conditions. Numerical results on basic 3D tests problems show the efficiency of
this approach. We also consider a quasi-incompressible test problem for which our nodal
solver gives very good results if compared with other Godunov solvers. We briefly discuss

K ds: o . . . .
ngirgiin scheme the compatibility with ALE and/or AMR techniques at the end of this work. We detail the
Compressible gas dynamics coefficients of the isoparametric element in the appendix.

Godunov scheme © 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this work we describe a method to solve the equations of Lagrangian hydrodynamics [3,28] on general unstructured
meshes in arbitrary dimension. The physical variables are the density p, the velocity u, the total energy e and the pressure
p. In integral form these equations are

D _ .
ot Jy, PdV =0, mass conservation,

ot Jvo PudV + J5 pndS =0,  momentum conservation,

(1)

D _ .
= fvjm pedV + fsjm pu.ndS =0, total energy conservation,

D _ .
ot Juo dV = fs umdS =0, volume conservation.

Here Vj(t) is a moving domain, in practice it is a moving cell with constant mass. The operator 2 = 9, + u - V is the material
derivative. The first three equations are physical equations, and the last one is a geometric one.

We call the scheme GLACE since it is a Godunov method (in dimension one the scheme is equal to the acoustic Godunov
scheme [17,18]), the scheme is LAgrangian, and finally the method is Conservative for the total Energy variable. The method
is cell-centered like any Godunov type scheme [17,18,37,20].

Classically, Lagrangian hydrodynamics equations are solved with staggered schemes (that is kinematic variables at nodes
and thermodynamic variables within the cells), following the seminal idea of Von Neumann [26]. We refer to the works
[4,3,9,6,16,15,27,39] and references therein for a presentation of this topic. These methods require the use of artificial vis-
cosity techniques to capture shocks. The so-called compatible hydrodynamics [6] Lagrangian scheme is a recent improve-
ment: it is by construction conservative for all physical variables. To our knowledge this is the only staggered Lagrangian
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scheme with this highly desirable property. Another approach that we do not discuss in this paper is the use of a Finite Ele-
ment formulation of Lagrangian hydrodynamics, see [33] where such a method (also staggered for the final scheme, and con-
servative for all physical variables) is described. We also mention the work on stabilized and variational multi-scale
formulations for Lagrangian hydrodynamics in [32,31,29,30], where a globally conservative formulation is obtained from
a nodal-based finite element method.

The a priori good properties of Godunov cell-centered methods are: a natural conservation of physical quantities; no need
for artificial viscosity techniques; easy implementation of fully conservative remapping and remeshing techniques. The
method described in this paper originates from a series of work [21,25,13,22] in which a new approach for the definition
of cell-centered Godunov schemes for Lagrangian hydrodynamics is pursued. In particular we follow [12,13], further ex-
tended in [22], where the idea of having nodes based fluxes is developed. This was recognized as a fundamental issue for
the design of Godunov schemes for Lagrangian hydrodynamics. On the contrary the Caveat approach [1], see also [3], suffers
from serious theoretical incompatibilities mainly because the fluxes are edge based and not node based. In a different direc-
tion we also refer to the recent work [10] in which a new class of ENO Lagrangian type schemes is developed for quadrilateral
cells and to [11] where an analysis of Godunov schemes on staggered meshes is performed.

In the following, we describe a general formalism which aims at simplifying the understanding of what is a cell-centered
Godunov scheme for Lagrangian hydrodynamics in any dimension on general polygonal (or polyhedral) meshes: the cells can
have warped faces as well in this new formalism, which was not the case in [13]. The presentation is no more partial differ-
ential equations (PDE) based as it was the case in [13,19] for instance. Instead we directly consider some basic formulas that
one can write for a moving mesh. This constitutes a framework which can provide a toolbox for the discretization of PDE
operators on moving meshes. It shows the importance of some vectors C;. (j stands for the cells, r stands for the vertices)
which contain all the needed geometric information. These vectors are all we need for the discretization of the divergence
operator and the gradient operator. Our aim is that it will be an aid to practitioners because these definitions are immediate
from the geometry of the mesh. In some sense the nodal solver that we construct is a kind of multiD Riemann solver and is a
Lagrangian generalization of Eulerian 1D Riemann solvers for which we refer the reader to the standard textbooks [37,20].
This solver is not a cure for the well known problems attached to Godunov solvers: on 1D test problems it behaves like any
other Godunov solvers. Our concern is the multiD generalization on general meshes. The design principle of our approach
makes a priori possible the use of any type of cells, not only simplicial meshes or combination of simplicial elements as
in the reference [24]. Simplicial elements are very convenient in order to have an immediate geometric interpretation. How-
ever in some 3D cases simplicial elements introduce an arbitrary non symmetric decomposition of the faces into triangles
(particularly in the case where all the nodes of the triangles must be vertices of the mesh, as in [24]). It can break the natural
symmetries of the problem and this is something we do not want to do for the kind of 3D meshes we use in the numerical
section. In the numerical section basic examples show indeed a very good behavior for meshes with such a symmetry. In the
appendix we detail the formulas for the 3D isoparametric element [36,14].

The outline of this work is the following. In Section 2 we define and explain the basic properties of the vectors C;.. The
next section is devoted to the presentation of the first-order GLACE scheme. Section 4 focuses on the discretization of bound-
ary conditions. Then we give some theoretical properties of the scheme in Section 5. Time step considerations are developed
in Section 6. The second-order “Monotone Upstream-centered Scheme for Conservation Laws” (MUSCL) extension is given in
Section 7. Some basic test problems are discussed in the numerical experiments Section 8. Finally the appendix gives more
technical material about the definition of the vectors C;. for isoparametric cells. We adopt the notation that all vectors and
matrices are bold faces. We use the convention that the time derivative of t — f(t) is f, while the time derivative of a com-
posed function g(x(t)) is 4g = (x', Vg).

2. Geometry on a moving mesh

The aim of this section is to provide basic relations on a moving geometry, which will be the foundations of the PDE dis-
cretization. Let us consider a computational domain 7~ ¢ R%. This domain is composed of cells indexed by j. In practice the
dimension of the problem can be d = 1,2 or 3. In the sequel we refer systematically to the volume of the cell. This is a con-
venient abuse of notation. In dimension d = 2 the volume becomes an area. In dimension d = 1 it is a length.

In a Lagrangian computation the mesh moves with the flow. The volume of cell j at time t;, = t;_; + At is denoted as V]’-‘.
The vertices of the mesh are nodes x¥ € R?. Let us denote x* = (x,...,x¥,...) the collection of all vertices. We assume that
the volume V]’f is defined as a function of the vertices x* — V;(x¥). It means that we have a formula to do so, whatever this
formula is. In the sequel we concentrate on the consequences of this assumption. For the simplicity of the presentation, we
shall also consider the semi-discrete scheme which is continuous in time and fully discrete in space: in this case the volume
is V;(x(t)).

A first problem is to compute the derivative £ V; of the volume as a function of the nodal velocities u,(t) = X.(t). This prob-
lem is fundamental in any Lagrangian computation. Let us define the gradient of the volume V; with respect to the nodal
positions X,

d d ‘
er = Vx,Vj = (Wmvj“” 78)(7“1\/]‘) S Rd. (2)
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This definition is the cornerstone of our approach, as in the seminal work [38] (more references to be found in [6,24]). By
construction one has

dv, = (Vav,.x) = 2 (G w). 3)
This equation expresses that the change of volume is due to a discrete divergence, see the last equation of (1). By duality it
can be used to define a discrete gradient.

Also fundamental is the homogeneity of the volume with respect to the vertices V;(1x) = 2*V;(x): for example in dimen-
sion d = 3 a scaling of the mesh size by a factor 2 implies a multiplication by 2> = 8 of all volumes. The Euler relation for
homogeneous functions holds, so

d (VaVjoX) =5 Z Gir, Xr)- (4)

It means that the knowledge of the geometrical vectors C;; is all we need to compute the volume of the cell and the variation
in time of this volume. Two additional properties can be deduced.

Proposition 1. For all cell j one has
3G =o0. (5)
-

If the vertex X, is in the interior of the computational domain and the volumes of the cells are compatible (that is their sum is equal
to the total volume) then

> .G =0. (6)
i

An interpretation of these properties is possible for simple geometries. We will show with an example in dimension d = 2
(see Section 2.3) that these algebraic properties are equivalent to a finite volume geometrical integration. In simple cases, Eq.
(6) can also be deduced from (5) after the definition of control volumes around the vertices.

Consider an arbitrary constant velocity field u, = u.. Then the volume of any cell is constant that is O :%Vj =
> (Cir, uer) for all ugs € RY. It proves relation (5). It remains to prove relation (6). Assume that the total volume
v =3 ,Viis constant: 0 =47 =3 4V; =5,(3,(Gyr,w)), thatis 0 =3, r(ZJ(CJvS,uS)> + (G, uy). Set us = 0 for s =,
and u, # 0 arbitrary for an interior node: it implies that }~,C; = 0 which proves the result.

We detail the computation of C;, in the subsequent paragraphs. In dimension d = 1 the length of a cell is uniquely defined.
The area of a polygonal cell is also uniquely defined according to the coordinates of its vertices in dimension d = 2. So Cj; is
uniquely defined for d = 1, 2. In dimension d = 3, several constructions can be derived to describe the geometry of a poly-
hedron defined by its vertices (this is essentially related to the presence of non-planar faces). For instance, one can consider
that an hexahedron is the image by an isoparametric transformation of the unit cube. But it can also be defined as the union
of several tetrahedra. In Appendix A we construct C; for the particular case of hexahedron Fig. 1: one is based on a
isoparametric representation. In all cases once the choice of a representation has been made, the Cj. is uniquely defined
by relation (2).

2.1. Computation of C; in 1D

To simplify, we denote by r=j+1 the vertex between j and j+ 1. Then of course V; =X~ Xy So Cjﬁ% =1 and

C..=-1

ji-%
2.2. Computation of C; in the planar 2D case

Consider the typical situation of Fig. 2. By convention the vertices are listed counterclockwise X;_1, X, X;,1, . .. With coor-
dinates X, = (x,y,). The quantity I (x.y,,; — ¥,X-.1) is the oriented area of the triangle with vertices X,, X1 and O = (0,0). The
sum of these oriented area is the total area V; = Y"1 (X-¥,.1 — ¥,Xr.1). Therefore the formula (2) implies (after elementary
manipulations) the formula used in [13]

1
er = j(_.Vr—l + Ve, X1 _XHl)t' (7)

2.3. Geometrical interpretation of (5)-(7) in the planar 2D case

For the completeness of the presentation, we give a geometrical interpretation of (5)-(7) in dimension 2, filling the gap
with the standard Finite Volume approach developed for example in [13,22]. Consider Fig. 3 where edges have been cut into
two half pieces. For example cells p and k are neighbors to the cell j. The interface between j and p (resp. k) is characterized by
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X7

X5

X1

X2

Fig. 1. In dimension d = 3, an hexahedron V; and its 8 vertices.

Cell

Fig. 2. A mesh in dimension d = 2.

the vector [jn, (resp. lxny): it is the product of the length of the interface by the normal. If one cuts these edges in two pieces
and glue them at the corner then one gets

1 1
5 lipmj, + 5 e (8)
The unit vector ny, is a definition of a normal at the node, and I;; is the half of the length of the segment [X;_1,X,.1]. By con-
struction one has

I]-rnj, =

1
ljrnjr = j(fyr—l +Yri1:Xr-1 — Xrﬂ)t = er.

In this framework the relation (5) simply means that the sum of the outgoing normals multiplied by the length of the inter-
faces is equal to zero. It is a well known property of any finite volume method: the cell j is a closed contour.

Consider now Fig. 4 where we have displayed in bold the pieces of boundaries which are used to define I;-n;. but also I, n,,
and lny. It is clear by construction that [imj + lprDyr + Iy = (S lpng, + 2 lmp) + (3l + 3 oempi) + (3 lpMigy + S lgmyg).
However, since [jn;, + l,n, = 0, all terms cancel and therefore I;nj + [,y + 0y = 0. This equality is the geometrical
interpretation of the general property (6).

In theory it is also possible to reinterpret the standard finite volume construction in our framework: by a standard Finite
Volume method we mean a scheme for which the fluxes are computed and applied through the edges. Geometrically it
corresponds to the Fig. 5. Then (5) is a sum over all the neighboring cells: it is still zero since the cell is a closed contour.
On the other hand (6) becomes lyny + lyny; = 0 for all k. A partial conclusion of the previous discussion is that node based
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Fig. 3. Cutting the edges in two pieces.

Cell p

|

|
|
|
|

Fig. 4. Checking formula (6).

quantities are convenient for 2D Lagrangian computations. So we base our extension in dimension d = 3 directly on the node
based vectors C;.

2.4. Computation of C; in 3D

In dimension d = 3, the computation of the vectors C; is slightly more difficult. Indeed non-planar faces are possible: the
computation of the total volume of a cell requires to define precisely the geometry of the polyhedron as it was discussed
before. Assuming that one is able to decompose the volume in a sum of tetrahedra, then it is enough to compute the C;,
in a consistent way for all tetrahedra and then to sum up these vectors. In Appendix A we indicate possibilities for the com-
putation of the C;, for hexahedrons with warped faces. The case of a tetrahedron is based on the following formulas. Consider
a tetrahedron j with vertices r = 1,2,3 and 4. One has

X1 X2 X3 Xa

Yi Y2 Y3 Vs

Z1 2y 23 24 '
1 1 1 1

X2 —X1 X3—X1 X4—X1
Vj:g Yo=Y1 Y3s—V1 YVa— D
Zy—2Z1 Z3—2Z1 24— 77

D =
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Cell p

|
|
|
|
|

Fig. 5. Standard finite volume construction.

So using (2) and differentiating according to Xx;, one gets

Yo Y3 Va X2 X3 X4| |X2 X3 X4
G =5 Zy Z3 Z4|,—|Z2 Z3 Z4|,|Y2 Y3 Vs
1 1 1 1 1 1)1 1 1

One notes that Cj; is normal to the opposite face (X, X3,X4) of X;. Its norm is one third of the area of the opposite face. The
other vectors C for r = 2, 3,4 are identical up to a permutation of the indices.

3. The GLACE scheme

The GLACE scheme is a one step forward Euler method that discretizes the Lagrangian equations (1). The only information
we need at the beginning of time step k is the knowledge of the vertices x* of the mesh, the vectors CJ"r and the values of the
physical unknowns inside the cells

pjuj.ef, V.

The unknowns are constants in each cell, that is the scheme is cell-centered. We show below how to compute the unknowns
at the end of the time step

k+1 gek+1 pk+1 :
p} ) u} ) ej ) v]s

in a compatible way with the mesh displacement x*! = x¥ + At u* where the node velocity uf is to be defined.
3.1. Discretization of the divergence operator

The formula for the variation of the volume implicitly contains a discretization of the divergence operator. For the sake of
simplicity of the presentation, we discuss this property in the semi-discrete context. Indeed the mass of a Lagrangian cell is
constant in time: V;(x(t))p;(t) = M; is independent of the time ¢. Let us now define 7; = pl the specific volume. Then

g

Mygi(6) = S V(D) = (G )

-
The hydrodynamics equations (1) imply p &7 = V - u. It means that 3°,(C;, u,) is an approximation in the finite volume sense
of V - u over the moving cell j

/VjV.udx: /avj(u,n) do~ Y (G u,).

r

3.2. Discretization of the gradient operator

Consider the bilinear form (u,p) — [,, (u,n)pdo which represents the work of the pressure across the moving boundary.
At the discrete level this quantity is !
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[ V-wwds = [ (wmpdox Y (Cup, = 3 Copy).

i i r r

where p;, is the pressure at vertex X, seen from the cell j which will be defined later. Assuming that the velocity is constant
(=u), one gets

/vj V- (pw)do = (u, (/Vj Vp dX) ~ <U,chrpjr>~

It implies that

\Y% dx:/ npdo ~ Y C;p,
/Vj p " p Z D)

is the discrete approximation of the gradient of the pressure. The discrete gradient operator is the adjoint of the discrete
divergence operator, as in the support operator method [34,5]. In principle one could argue that the node pressure should
be the same for all cells around the same vertex X;: that is p;. = p, for all j. This is not possible in the general case for reasons
that have been explained in [13]. At this point we obtain a possible semi-discrete numerical approximation of the continuous
system (1)

M}'TJ,‘(t) =2 (G, u),

r

Mjuj(t) = — ; GirDjrs 9)
Miej(t) = = >2(Gir, ur)p;;-

.
The first equation is the discretization of the mass conservation relation, and reflects the compatibility of the method with
the discretization of the volume conservation equation which is the fourth equation of (1). The last two equations are the
semi-discrete version of the momentum and total energy equations. This formulation is similar but different to the one pur-
sued in [22,24]. It remains to close the problem with a convenient definition of the velocity of the vertices u, and the pres-
sures p;, which are both node based quantities.

3.3. The nodal solver

In order to determine the velocity u, of the vertices and the node pressures p;. (see Fig. 6), we generalize what has been
proposed in [13].

The nodal solver is based on two different formulas. The first formula (10) is a multidimensional generalization of a first-
order Riemann solver, but in the direction parallel to the vector Cj.. So we assume a linearized-Riemann-invariant relation in
the direction of Cj

Py — P + % (W, —w;, m;) = 0. (10)

By definition the normal vector n; is such that

Us, Pj5

uy, pj1 Uz, pj2

Fig. 6. Nodal velocities and nodal pressures.
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IGirl’

This relation is an approximation of the Rankine Hugoniot relations for shock hydrodynamics in dimension one, and is com-
monly used for the design of Godunov solvers. A priori the coefficient o is defined as the acoustic impedance

%r = PjiC; (a1

n; = e[ =/ (e, M) = 1.

where ¢; is the sound speed in cell j: 2 = o"‘"s and S is the entropy. In this formula o does not depend upon the node index r.
However other determinations of «; are possnble. In Section 6.2 we will describe one of them. The second formula, needed to

construct the nodal solver for the integration of (9), expresses that the sum of all forces around the vertex x; is zero

> Cipj =0. (12)
J

This formula is natural in the context of Lagrangian methods because it enforces the conservation of momentum, see Prop-
osition 3.

The solution of the set of equations (10)-(12) is easy to compute. Using (10) one can eliminate the pressures in (12). One
gets a linear system

Au, =b,. (13)

The unknown vector is the node velocity u, € RY. The matrix is

G 2C;

A = ijcj ir @ Cjr € R™A. (14)
: [

By construction A, = A! is non negative. If the mesh is non degenerate then A, > 0. Let us be more precise. Assume for exam-

ple that A,u, = 0, which implies that

C,,u, .
(u,, Aru,) = ijc] J|c‘ =0= (Gyr,u,)=0 Vi (15)

Due to the equality (6) the vectors Cj; are linearly dependent. If the number of these linearly dependent vectors is greater or
equal to d + 1 then it is enough, in the general case, to generate a basis of R, which implies that u, = 0. In summary the
general case is that if d + 1 cells connect to the vertex x,, then the matrix A, is non-singular. The right hand side is

Ci ®C;
b= Giby + 306 e W € R (16)
j j

The solution of the linear system is
ur:A;]br- (17)
Once the nodal velocities u, have been calculated, one computes the nodal pressures p;. using (10)

Py = Dj + p;G(0r — W), ). (18)

3.4. First-order GLACE scheme
The first-order GLACE scheme is the following:

(1) At the beginning of the time step one computes the geometrical vectors Cj"r for all j,r, as a function of the vertices x¥
(Sections 2.1, 2.2, 2.4 and Appendix A).

(2) Then one determines the nodal velocities u¥ and the nodal pressures pj’; using the nodal solver (17) and (18).

(3) It is enough to update the total momentum and the total energy. For the momentum one uses

uk+l ;

M] Z rpjr (19)

The total energy is updated with

ekl _ ok

W =2 (Gw)r 20
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(4) Then the vertices are moved
X1 = xk 4 At ut (21)
and one computes the new volume V}‘”.

(5) Finally the new density in the cell is computed

M;
k+1°
Vi

pJ(<+1 — (22)

4. Boundary conditions

Since GLACE is based on a nodal solver, the implementation of boundary conditions requires a special treatment. The ma-
jor difficulty comes from the corners of the computational domain: at such a corner two different boundary conditions can
interact. Another practical problem is that the matrix A, defined in (14) may become singular at the boundary because A,
does not contain any information about the boundary condition. It is illustrated in Fig. 7. For this very simple mesh A, is
by construction singular at all vertices: A, is the sum of two rank one matrices at X, and is a rank one matrix at x;. But
of course if a proper boundary condition is considered, it can be enough to obtained a well posed problem at the boundary.
This is indeed the case. We propose to rely on the following approach which is adapted to many practical situations. The
method aims at a correct discretization of the boundary condition by means of the definition of a new non-singular matrix
A; and a new right hand side b,, so that the node velocity is the solution of the non-singular discrete linear system

Ay, =b,. (23)
The main motivation for using this method is that it is convenient for implementation considerations since the boundary
nodes can be treated like interior nodes, once A, and b, have been defined.
4.1. Sliding on a plane

Consider Fig. 8 where node x, is constrained to move only on the boundary plane xOy. The node velocity u, is orthogonal

to the exterior normal n

(u;,n) =0. (24)
We consider that the projection, tangentially to the plane, of the sum of forces must vanish

> (C;rp;r. 1) = 0, for all t such that (t,n) = 0. (25)

j
This is a projected version of the action-reaction law (12). Let us assume that relation (18) holds as before
pir = Dj + pici(uy — uy,myp). (26)

So we get a new linear system (24)—(26). It can be proved that this linear system has a unique solution in the general case
(that is when d cells impinge on X;). Our method to prove this property is based on a reformulation of the boundary condition
with a new matrix A, (and a new right hand side b, ) such that A, is non-singular by construction.

Fig. 7. Degenerated matrix A,.
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Yy

Fig. 8. Sliding on a plane.

Let us assume that A, and b, have already been calculated by (17) and (18). Then we define a new matrix
A =(I-n@nA(-nen)+trA)nen=A,' (27)
and a new right hand side

b, = (- nen)b,. (28)

Remark 1. In Eq. (27), tr(A;) is used to ensure that the condition number ofﬁr is not too large. At least the condition number
is independent of the scaling A, — JA..

In the general case the matrix A, is non-singular. This is a consequence of the following property.

Proposition 2. The vector u, solution of A, = I?, is also the solution of discrete equations at the boundary, that is (24) which is
the sliding condition, (25) which is the action-reaction law tangentially to the plane, and (26) which is the acoustic solver in the
corner direction.

The new linear system writes
[(I-n@n)A(I-nen)+trA)n®nu, = (I —n®n)b,. (29)
Take the scalar product of (29) with the normal vector n: then tr(A;)(n,u,) = 0. Since A, is symmetric non negative, then
A, = 0 if and only if tr(A,) = 0. But there exists always at least one cell impinging on vertex X;. This is clear on Fig. 7 which
is perhaps the most singular configuration. So A, # 0 and tr(A,;) # 0. It implies the sliding condition (24). Since
(I-n@n)t=t and (n®@n)t =0, the Eq. (29) simplifies into (I — n®n)A;u;, = (l — n® n)b,. Take the scalar product of

(29) against any tangent vector t orthogonal to the normal n. One gets (t,A;u,) = (t,b;). By construction of A, and since
the pressures are computed using (26), one has Aru, = >,C;;p;,. It implies (25). This ends the proof.

4.2. Sliding on a line
This case is treated with the same method. We modify the matrix and the right hand side.
The node slides parallel to the tangent vector t which is orthogonal to both normals
(t,ny) = (t,ny) =0.

The planes are not necessarily orthogonal: that is (ny,n,) # 0 is possible. Let us define the new non-singular matrix

A =totA(tet)+tr(A)( —t®t)
and the new right hand side

b, = (t® t)b, = (t,b)t.

The nodal velocity on the line is defined as the unique solution of iT,ur = B: (see Fig. 9).
4.3. Given pressure

The situation is different from the previous ones. Let us assume that an external pressure p,,, is imposed on the vertex x;,
as described in Fig. 10.
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Fig. 9. Sliding on a line.

External domain

Pext

X

Cell j
Cell k

Cell p

Fig. 10. Given pressure p.,, at the boundary.

We consider that the sum of the forces around x; is zero

Z cjrpjr + < Z er>pext =0.
j i

The vector —37.C;; is the external surface at X, on which the external given pressure must be applied. One has }7,C; # 0

because the total volume changes (the mesh moves at X,). In this case it is sufficient to keep the same matrix A, = A, but
to modify the right hand side

br = br - Z erpext' (30)
J

4.4. Mixed condition

The problem arises at the corners, as described in Fig. 11 in dimension d = 2. The problem is the same in dimension d = 3.
At x, two different boundaries interact. A given external pressure p,,, is imposed on the boundary. The other boundary con-
dition on the wall is a sliding condition.

A solution is easily computed as follows. In a first step we modify the right hand side with (30) keeping the same matrix.
Then we modify the matrix and the right hand side using the sliding method (27) and (28). So the right hand side is modified
twice. Then we solve (23).

5. Main theoretical properties

As for any Lagrangian method, conservation and compatibility with the entropy condition are essential properties.
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Fig. 11. Mixed conditions applied on vertex X;.

5.1. Conservativity

Proposition 3. By construction, the GLACE scheme is conservative in total mass, total momentum and total energy.

This property is true up to boundary conditions of course. Therefore we forget about boundary conditions and concentrate
on the key features of the scheme. By construction GLACE is of course conservative for the mass of each cell, so the total mass
is also preserved.

Concerning the total momentum one has

ZM uk+l —ut -y ( ZC,"TPJ"r ) _ Z: (; C,rp]r>

J
One equation of the nodal solver is (12): ZJC"err 0. Hence the total momentum is preserved Z}-Mj-uj’,‘“ = Zijuj’.‘. Concern-
ing the total energy one has

ek+l _ ek

k k
§ M= :( 5 <er,uk>p1’.‘r> - _Z <§ :crpj’;,u§>.
j r
Under the same condition, one gets the conservation relation ZJ.Mjej’.”1 = Zije}’.‘.

5.2. Compatibility with the entropy condition

The compatibility of the scheme with the entropy condition is an important property of any Lagrangian method. It guar-
antees a correct physical behavior of the cell, and also gives some indications that the method is stable. In what follows we
show that the semi-discrete GLACE scheme is such that the entropy increases in the cell, that is £S; > 0. For a discrete
scheme in space and time, the estimate is much more difficult to obtain [13]: it involves the CFL condition.

Let us assume that the pressure law is compatible with the fundamental principle of thermodynamics

TdS = de + pdr.
The entropy is S,e =e —1 |u]? is the internal energy and the temperature is T > 0.

Proposition 4. The semi-discrete GLACE scheme (9) is compatible with the entropy condition. This property remains valid with
any boundary conditions such that these boundary conditions are compatible with Eq. (10).

One has T;4S; = & + p;T} = p;T) — (uj,u} + e Therefore M;T;&S; = p;>_,(Cir,ur) + (W), >°,CiDj) — >, (Cir, ur)py. On the
other hand one has }_, (G, u;)p; = 0 since ), C;, = 0. After elementary manipulations one gets

d
M;T; S =D _(Gir, ur — W)(p; — py).

Eq. (10) implies that (G, u, — w;) and p; — p;, have the same sign, so that M;T; 45; > 0, and the proof is completed.

This property explains why the scheme has no need of any artificial viscosity technique to be able to handle shocks. By
construction the scheme generates entropy and is conservative. The theory of conservation laws [20] shows that it is suffi-
cient to be compatible with the Rankine Hugoniot relations for discontinuous solutions.
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Nevertheless the compatibility of the entropy, as stated in the proposition, is not enough. It is important to verify that the
increase of entropy is not too large, in particular for smooth compression flows or for rarefaction waves. We have two an-
swers: (a) we have checked on a large number of test problems that the entropy production is moderate. In particular we
have compared with the Caveat scheme [3] and also with the first-order scheme [22]. See the discussion for smooth com-
pression flow in Section 8.6; (b) as usual in computational fluid dynamics, a second-order MUSCL extension of the scheme
allows for a better accuracy for smooth flows, in particular for rarefaction waves. We have developed such a MUSCL proce-
dure that we will explain below.

6. Time step considerations and geometrical correction

For Lagrangian computations, an efficient control of the time step is important to obtain the hydrodynamic stability of the
method (that is stability of thermodynamic quantities like density, pressure,...) and the stability of the mesh (because a
moving mesh is very sensitive to spurious mesh displacements). We also show how to introduce a simple geometrical cor-
rection so that GLACE is equal to the standard 1D Godunov scheme on Cartesian meshes (grids).

6.1. CFL restriction

Since the method is explicit, a CFL condition is needed [3]. In practice this condition takes the form chAX—‘] < CFL for all j,
where Ax; is a local length for cell j, ¢; is the local sound speed and CFL < 1. As usual the definition of Ax; is not obvious
for an unstructured mesh. In practice a local evaluation based on the radius of the inscribed circle is possible, following
the so-called “worst guess” principle. Since our second-order extension, described in Section 7, is based on a Lax-Wendroff
procedure (the second-order Lax-Wendroff scheme and the first-order Donor cell scheme for linear transport are stable un-
der the same CFL condition) we impose the same CFL restriction for both the first-order GLACE scheme and the second-order
extension. It is also possible to add time step restriction based on volume variation as described in [24].

6.2. The geometrical correction ;

The idea which is pursued in this section is that it may be worthwhile that the first-order GLACE scheme degenerates
exactly to the first-order Godunov acoustic solver on Cartesian geometries (grid). Let us point out that there is no theoretical
reason to impose that the scheme degenerates in simple geometries to the exact acoustic solver: in our mind it is rather a
comfortable framework since it is more easy to calibrate the scheme on simple 1D test problems with this modification. The
proposed procedure does not change the consistency of the scheme, in the sense that the solution at convergence is the
same. On the other hand this procedure modifies the viscosity of the scheme. So it may have impact on the stability and
on the effective diffusivity of the scheme. Another interest of this study is that it shows the influence of the aspect ratio
of the mesh on the resulting scheme.

The main idea is to introduce /; a free parameter (a priori close to 1) and to modify oy which becomes o, = p;¢;/;. What
we propose is to replace the discrete relation (18) by

2 (G

H
and y; is the largest eigenvalue of the matrix B; = }~, C"ré{:f’. The matrix B; ¢ R*** is symmetric positive definite in the general

case. Note that 4; is non dimensional. We have observed in all our simulations that /; € [1,\/§]. A proof that % € [1, \/f]

exists in dimension d = 2. In practice we first compute ; with Cardan’s formulas, with a careful elimination of the singular-
ities. Then we compute ;.

Dy = D; + piCi4i(uy — ), where 7; =

31)

Proposition 5. Assume that the mesh is structured, that is j = (j;,j,,j3) With ji,jo,j3 € Z. Consider a 1D flow in the x direction,
and assume that the mesh size is everywhere smaller in the x direction than in the y and z directions, that is Ax; < Ay; and
Ax; < Az. Consider the scheme with J; given by (31). Then the scheme is equivalent to the 1D Godunov acoustic scheme

_ Piy G PPy Gy Pip Pj; Gy Pig 1161 +1

13,1+7 Pjy Gy HPj; 15y 41 i Gy +Pj 1 Gy +1 ( i) J1+1)7 (32)
- Pjiy Gy Y05y 41 Gy +1 11 1 (p —p )
ks Piy Gy +Piy +1Gp 41 PGy Hop G I B

The proof is a bit technical and is given in the appendix. If /; is not set to the optimal value (31), then the viscosity coef-
ficient in the formulas (32) is premultiplied by a bounded factor /; and }7

Assume now that the grid is such that
10min(Ay, Az) > Ax > max(Ay, Az)

(this is just an indication, it depends on the test problem), then the previous proposition does not apply. However we have
observed that the scheme behaves well in this case and we see a similar behavior with respect to the standard Godunov
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scheme in the x direction. But if Ax > max(Ay, Az), then the results may show a important dependence with respect to the
aspect ratio, both in term of stability and accuracy. However, it must be noticed that all the theoretical properties are true
(entropy, conservativity,...) with or without this small geometrical correction.

In practice we use the correction (31) systematically on all meshes. If the second-order extension is used, it is reasonable
to think that the influence of the aspect ratio of the mesh is less important.

7. Second-order extension

In this section we describe the MUSCL type second-order extension of the first-order GLACE scheme. Essentially this is
based on the seminal ideas of Van Leer applied in the Lagrangian context [3]. The method that we have chosen has the
advantage to be a one step scheme, which means we do not use a Runge-Kutta two-step integration scheme. The results
in 1D for the Sod shock tube problem show that it provides the usual gain of accuracy with respect to a first-order scheme.

7.1. Slope reconstruction and limitation

The idea is very natural. In all cells, one reconstructs an affine function x—p;(x) for the pressure
pi(X) = p; + (Vp;, X — Xj),

and also for the velocity @;(x) = u; + Vu;(x — X;). The quantity Vp; is a pressure gradient. We reconstruct this gradient from
the neighboring values. Many ways are possible to do so. In practice we prefer to construct first a node gradient

_ >_iGirb;

vp r VJ k)

where Vj; is a control volume around node X;: the only constraint is >_,V; = V;. One can use the standard definition of the
control volume in staggered schemes [3,6,9] where the centers of the faces determines the limit of control volumes. Then we
average the node gradient to obtain an approximate cell gradient

v
Vp, = Zer ff.

This is quite a crude way to compute a local gradient. However it has been proved to be accurate enough and very robust. We

. . X Cjp@u; "
perform the same reconstruction for the velocity. It gives Vu, = 2,6 and Vu; = PIAL .

Vi - 2'1
Once this is done, we limit these quantities with the Dukowicz algorithm [15]. That is Vp; is damped and becomes:
Vp; — 0;Vp;, 0< g; < 1. Many other limitation procedures are possible [37], as usual in hydrodynamics codes.
However the spatial limitation might not be enough to obtain stability in all cases. By analogy with the Lax-Wendroff
scheme for linear advection, we introduce another factor 1 — v; (v; is the local CFL number). For example the final recon-
structed pressure is now

pi(X) =p;+ (1 =v)o;(Vp;,x—X;), 0<y;<1.

The same factor is applied to the reconstructed velocity, with the exception that for flows and meshes which rotational sym-
metries it can be better to limit the gradient of the velocity only in the radial direction. This tensorial limitation procedure is
known to be much better in 2D on equi-sectorial meshes. It must be noticed that the situation is less clear in 3D because such
perfect equi-sectorial meshes cannot exist.

7.2. Second-order nodal solver

Assume now that the reconstructed cell pressure and the reconstructed cell velocity are available. Then we use them di-
rectly in the nodal solver, that is we consider the solution (u;, p;,) of: p;. — p;(X;) + o4 (0 — W;(X;), ;) = 0, and 3°,C;rp;, = 0. Up
to these small modifications, we proceed as in Section 3.3. That is p;, and u, are computed after inversion of a linear system.

An advantage of the overall procedure is its natural compatibility with the boundary conditions. The method is simple to
use, and inexpensive with respect to CPU considerations. We found an important gain of accuracy using it, specially in rar-
efaction fans.

8. Numerical results

We discuss basic test problems for Lagrangian flows.

A first series of problems is computed on grids. The 1D test problem has been computed with the 3D scheme with a mesh
similar to the one depicted in Fig. 7 and in the configuration described in Proposition 5. We show the results computed on a
3D grid for the Saltzmann problem and for the Sedov problem. These problems are challenging ones for Lagrangian methods
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since the mesh is not aligned with the flow, see for example [8] where it is shown that spurious jets may exist along the axis.
We have observed that if the calculation is done with a second-order extension, then the numerical results are quite good.
A second series of tests is characteristic of calculations on 3D spherical meshes for Inertial Confinement Fusion applica-
tions. The 2D and 3D Kidder test problem is to assess the numerical convergence of the method. The meshes of the { of the
sphere that we use are symmetric with respect to the reduced connectivity line. The reduced connectivity line is the set of
vertices behind the reduced connectivity point which is visible at the internal face of the mesh for the thin shell problem: it
coincides with the middle of the internal face. It must be noted that the design of such meshes in 3D makes necessary the
incorporation of this reduced connectivity point. The C;. are computed with the isoparametric representation.

8.1. Sod 1D

This test case is the very classical 1D Sod shock tube [35]. It is a simple Riemann problem. It involves a perfect gas with an
adiabatic constant y = 1.4. The initial conditions are Uy(x < 0.5) = U; and Ug(x > 0.5) = U, with U; = (p, = 1,u; =0,p, = 1)
and U, = (p, = 0.125,u, = 0,p, = 0.1). The results for the density are compared to the analytical solution on Fig. 12 for
the Lagrangian second-order GLACE scheme. We observe a very good accuracy between the discrete solution and the exact
solution. It is an immediate consequence of the property 5 which guarantees that the scheme is equal to a standard Godunov
scheme in 1D, provided the mesh is fine in the longitudinal direction which is the case since Ax < min(Ay, Az). So the result is
similar to the results obtained with any 1D second-order Godunov method. In Fig. 13 we plot the result computed with the
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Fig. 12. The 1D Sod shock tube problem. Comparison with the reference solution (plain line) of the density profiles at t = 0.2s for the order 2 scheme with a
Dukowicz limiter (symbols).
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Fig. 13. The 1D Sod shock tube problem. First- and second-order but without temporal limitation (some oscillations are visible at the shock). The second-
order scheme without the temporal limitation is already more accurate in the rarefaction fan.
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first-order scheme (the dissipativity is visible in the rarefaction fan) and the results computed with the second-order scheme
but without the temporal limitation. An extra oscillation is visible at the shock. This is one of the reason why we use the
temporal limitation in all calculations.

8.2. Saltzmann 3D on a skewed grid

The Saltzmann test problem is a severe shock tube problem computed on a distorted mesh. It is known to be quite
demanding in term of stability. The data are described in [7]. At t = 0, the density is p = 1, the pressure is ~ 0 (107° in prac-
tice), the velocity is 0. The piston’s velocity is 1. The mesh is skewed, that is

x=01(1-1)+0.01(11 — k)(6 —m)/5sin(0.01(I - 1)), 1< m <6,
x=01(1-1)+0.01(k—1)(m-6)/5sin(0.01(I- 1)), 7<m<11,
y=001(m-1),
z=001(k-1)

where 1 < k,m < 11 and 1 <[ < 101. The analytical value of the density after the first shock is 'V%} = 4 since y = 3. For this
problem we noticed that the deformations of the mesh are more important with the first-order scheme than with the sec-
ond-order scheme. The result is provided in Fig. 14 at time t = 0.7. We observe an average density of about 4 with some spu-
rious values near the skewed sliding lines.

8.3. 3D blast wave

A challenging problem for Lagrangian methods is the 3D blast wave problem (Sedov problem) on a grid. A very strong
shock propagates from the center on the domain. We refer to the recent works [33,23,8] for uptodate references. The prob-
lem can be quite difficult for Lagrangian methods because spurious jets might introduce some important non accuracy. This
behavior is common to many Lagrangian schemes: it has forced some authors to use regularization methods or to add extra-
viscous contributions in the solver. In the following numerical experiments, we have used that data given in [33]. The mesh
is made of 20% cells on a grid [0, 1.1]°. The parameter of the pressure law is y = Z The distribution of the internal energy that
was adopted is the regularized one from [33], that is

10 10

{p<0,0,0) =¥ x107, P00 = P10 =Poo1) = &x107,
10 10

Paag = 51_4 x 10, pa10) =Po11) =Paoy = 53_4 x 107

By convention (0,0,0) is the numbering of the corner cell. Our results computed with the second-order scheme is provided on
the left part of Fig. 15. No other regularization was necessary. The accuracy provided by the second-order extension is en-
ough to capture the correct solution. Some discrepancy is nevertheless visible on the figure at 45 degrees on the facets of the
domain.

We also compute the an equivalent 3D Sedov-like blast wave problem on the th of the sphere (see also Fig. 15). The mesh
is 100 layers x 75 sectors = 7500 cells. The angular discretization of the mesh is 9 degrees (measured on the boundaries).
The initial data are p = p = 1 everywhere except in the central layer (r < 0.01) where p =1 and p = 10'°. We used the
first-order scheme with sliding walls on the boundaries. With the second-order scheme the mesh is almost the same. We
compare in Fig. 16 the result with a reference solution. The final time is t = 0.00145. We have plot the density for all the
radius of the simulation on the Fig. 16. At the final time the symmetry of the mesh is very good since all curves are almost
identical, despite of the reduce connectivity point (and also very close to the reference solution).

il
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Fig. 14. The 3D Saltzmann problem computed with the second-order GLACE scheme. The time is t = 0.7. The analytical solution is p = 4 after the shock, and
p =1 before the shock.
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Fig. 17. Initial condition and final solution for the Kidder problem. 2D on the left, 3D on the right. The data are normalized so that the homothety factor is
exactly 1 in both cases.
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Fig. 18. The analytical solution is the continuous line, the discrete solution is plotted with symbols. On the left the 2D curves for the mesh M; and the first-
order O; scheme. On the right the 3D curves for the mesh N; and the order 0.

Table 1
Convergence of the numerical solution towards the exact solution, in function of the order of the scheme (0; and 0,) and of the mesh. The order of convergence
is systematically computed with the two last meshes in the list (that is M3M, or NN3).

Dimension Mesh Order ri(ty) Te(ty) Order ri(ty) Te(tf)

2 M; 0 0.4223 0.4820 0, 0.4343 0.4880
2 M, 04 0.4392 0.4937 0, 0.4458 0.4966
2 M 0, 0.4453 0.4975 0, 0.4487 0.4991
2 My 04 0.4478 0.4989 0, 0.4495 0.4997
Convergence order ~1.09 ~1.18 ~1.37 ~1.58

3 Ny 04 0.4133 0.4833 0, 0.4269 0.4885
3 N, 04 0.4339 0.4929 0, 0.4422 0.4963
3 N3 0, 0.4424 0.4967 0, 0.4472 0.4987
Convergence order ~1.08 ~1.10 ~1.47 ~1.50

~